【題目】如圖,點(diǎn)P是圓O直徑CA延長(zhǎng)線上的一點(diǎn),PB切圓O于點(diǎn)B,點(diǎn)D是圓上的一點(diǎn),連接AB,AD,BD,CD,PB=BC.
(1)求證:OP=2OC;
(2)若OC=5,sin∠DCA=,求BD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)4+3
【解析】
(1)連接OB,由切線的性質(zhì)和等腰三角形的性質(zhì)得出得出∠P=30°,再由直角三角形的性質(zhì)即可得出結(jié)論;
(2)作AH⊥BD于H,由圓周角定理和三角函數(shù)得出AC=10,CD=8,AD=6,由直角三角形的性質(zhì)得出AB=AC=5,由三角函數(shù)得出AH=3,BH=4,求出DH=AH=3,即可得出結(jié)果.
(1)證明:如圖1,連接OB,
∵PB切圓O于點(diǎn)B,
∴∠OBP=90°,
∴∠P+∠POB=90°,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠POB=∠OBC+∠OCB=2∠OCB,
∵PB=BC,
∴∠P=∠OCB,
∴∠P+∠POB=∠P+2∠OCB=3∠P=90°,
∴∠P=30°,
∴OP=2OB=2OC;
(2)解:如圖2,作AH⊥BD于H,
∵AC為⊙O的直徑,
∴∠ADC=90°,∠ABC=90°
∵OC=5,sin∠DCA=,
∴AC=10,CD=8,AD=6,
∵∠OCB=30°,
∴AB=AC=5,
∵sin∠ABD=sin∠DCA=,
∴AH=3,BH=4,
∵∠ADH=∠OCB=30°,
∴DH=AH=3,
∴BD=BH+DH=4+3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1,并直接寫出C1點(diǎn)坐標(biāo);
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點(diǎn)坐標(biāo);
(3)如果點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(guò)(2)的變化后D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與y軸的交點(diǎn)坐標(biāo)是 ,頂點(diǎn)坐標(biāo)是 .
(2)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)結(jié)合圖象回答:當(dāng)﹣2<x<2時(shí),函數(shù)值y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在中,,,D是BC的中點(diǎn).
小明對(duì)圖①進(jìn)行了如下探究:在線段AD上任取一點(diǎn)P,連接PB.將線段PB繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E,連接BE,得到.小明發(fā)現(xiàn),隨著點(diǎn)P在線段AD上位置的變化,點(diǎn)E的位置也在變化,點(diǎn)E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請(qǐng)你幫助小明繼續(xù)探究,并解答下列問(wèn)題:
(1)當(dāng)點(diǎn)E在直線AD上時(shí),如圖②所示.
① ;②連接CE,直線CE與直線AB的位置關(guān)系是 .
(2)請(qǐng)?jiān)趫D③中畫出,使點(diǎn)E在直線AD的右側(cè),連接CE.試判斷直線CE與直線AB的位置關(guān)系,并說(shuō)明理由.
(3)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),求AE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,AB=4cm,點(diǎn)M為邊BC的中點(diǎn),點(diǎn)N為邊AB上的任意一點(diǎn)(不與點(diǎn)A,B重合).若點(diǎn)B關(guān)于直線MN的對(duì)稱點(diǎn)B'恰好落在等邊△ABC的邊上,則BN的長(zhǎng)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(,),且,,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”.下圖為點(diǎn)P,Q 的“相關(guān)矩形”的示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0).
①若點(diǎn)B的坐標(biāo)為(3,1)求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為,點(diǎn)M的坐標(biāo)為(m,3).若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);
(3)對(duì)于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是⊙O上的兩點(diǎn),C是⊙O上不與A,B重合的任意一點(diǎn).如果∠AOB=140°,那么∠ACB的度數(shù)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點(diǎn)D為AB邊上一點(diǎn)(不與點(diǎn)B重合),連接CD,將線段CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)C的對(duì)應(yīng)點(diǎn)為E,連接BE.若AB=2,則△BDE面積的最大值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com