【題目】如圖,已知拋物線y=ax2-4x+c(a≠0)與反比例函數(shù)y=的圖象相交于B點(diǎn),且B點(diǎn)的橫坐標(biāo)為3,拋物線與y軸交于點(diǎn)C(0,6),A是拋物線y=ax2-4x+c的頂點(diǎn),P點(diǎn)是x軸上一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),P點(diǎn)的坐標(biāo)為_______

【答案】(,0)

【解析】

根據(jù)題意作出合適的輔助線,然后求出點(diǎn)B的坐標(biāo),從而可以求得二次函數(shù)解析式,然后求出點(diǎn)A的坐標(biāo),進(jìn)而求得A的坐標(biāo),從而可以求得直線AB的函數(shù)解析式,進(jìn)而求得與x軸的交點(diǎn),從而可以解答本題

解:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A',連接AB,則ABx軸的交點(diǎn)即為所求,

∵拋物線y=ax2-4x+c(a0)與反比例函數(shù)y= 的圖象相交于點(diǎn)B,且B點(diǎn)的橫坐標(biāo)為3,拋物線與y軸交于點(diǎn)C0,6),

∴點(diǎn)B3,3),

解得,

y=x2-4x+6=x-22+2

∴點(diǎn)A的坐標(biāo)為(2,2),

∴點(diǎn)A'的坐標(biāo)為(2,-2),

設(shè)過(guò)點(diǎn)A'(2-2)和點(diǎn)B3,3)的直線解析式為y=mx+n

∴直線AB的函數(shù)解析式為y=5x-12,

y=0,0=5x-12x=,

故答案為:(

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系點(diǎn),將點(diǎn)A向右平移6個(gè)單位長(zhǎng)度,得到點(diǎn)B.

(1)直接寫(xiě)出點(diǎn)B的坐標(biāo);

(2)若拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A,B,求拋物線的表達(dá)式;

(3)若拋物線y=-x2+bx+c的頂點(diǎn)在直線y=x+2上移動(dòng),當(dāng)拋物線與線段AB有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax﹣3a(a<0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,頂點(diǎn)為D,直線DC與x軸相交于點(diǎn)E.

(1)當(dāng)a=﹣1時(shí),求拋物線頂點(diǎn)D的坐標(biāo),OE等于多少;

(2)OE的長(zhǎng)是否與a值有關(guān),說(shuō)明你的理由;

(3)設(shè)∠DEO=β,45°≤β≤60°,求a的取值范圍;

(4)以DE為斜邊,在直線DE的左下方作等腰直角三角形PDE.設(shè)P(m,n),直接寫(xiě)出n關(guān)于m的函數(shù)解析式及自變量m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長(zhǎng)度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個(gè)三角形的面積S(單位:cm2)x(單位:cm)的變化而變化.

1)請(qǐng)直接寫(xiě)出Sx之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)

2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,點(diǎn),將點(diǎn)A向右平移6個(gè)單位長(zhǎng)度,得到點(diǎn)B.

(1)直接寫(xiě)出點(diǎn)B的坐標(biāo);

(2)若拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A,B,求拋物線的表達(dá)式;

(3)若拋物線y=-x2+bx+c的頂點(diǎn)在直線y=x+2上移動(dòng),當(dāng)拋物線與線段AB有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 已知拋物線的對(duì)稱軸是直線x=3,且與x軸相交于A,B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè))與y軸交于C點(diǎn) .

(1)求拋物線的解析式和A、B兩點(diǎn)的坐標(biāo);

(2)若點(diǎn)P是拋物線上B、C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B、C重合),則是否存在一點(diǎn)P,使△PBC的面積最大.若存在,請(qǐng)求出△PBC的最大面積;若不存在,試說(shuō)明理由;

(3)若M是拋物線上任意一點(diǎn),過(guò)點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),求M點(diǎn)的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M為正方形ABCD內(nèi)一點(diǎn),點(diǎn)NAD邊上,且BMN=90°,MN2MB.點(diǎn)EMN的中點(diǎn),點(diǎn)PDE的中點(diǎn),連接MP并延長(zhǎng)到點(diǎn)F,使得PFPM,連接DF.

(1)依題意補(bǔ)全圖形;

(2)求證:DFBM

(3)連接AM,用等式表示線段PMAM的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線過(guò)點(diǎn)A(,-3) B(3,0),過(guò)點(diǎn)A作直線AC//x軸,交y軸與點(diǎn)C.

(1)求拋物線的解析式;

(2)在拋物線上取一點(diǎn)P,過(guò)點(diǎn)P作直線AC的垂線,垂足為D,連接OA,使得以A,D,P為頂點(diǎn)的三角形與△AOC相似,求出對(duì)應(yīng)點(diǎn)P的坐標(biāo);

(3)拋物線上是否存在點(diǎn)Q,使得?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)用公式法解方程:5x2﹣4x﹣1=0

(2)x2+7x﹣3=0(用配方法解方程)

查看答案和解析>>

同步練習(xí)冊(cè)答案