【題目】如圖,將一個8cm×16cm智屏手機(jī)抽象成一個的矩形ABCD,其中AB=8cm,AD=16cm,然后將它圍繞頂點(diǎn)A逆時針旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中A、B、C、D的對應(yīng)點(diǎn)依次為A、E、F、G,則當(dāng)△ADE為直角三角形時,若旋轉(zhuǎn)角為α(0<α<360°),則α的大小為_____.
【答案】30°或150°或180°
【解析】
由旋轉(zhuǎn)可得AE=AB=8cm,∠EAB=α,先求得∠DAE=60°,然后分三種情況:當(dāng)AE在AD右側(cè)和左側(cè)時,當(dāng)AE與AB在同一直線上時討論計(jì)算即可.
由旋轉(zhuǎn)可得AE=AB=8cm,∠EAB=α,
若∠AED=90°時,
∵cos∠DAE=
∴∠DAE=60°,
當(dāng)AE在AD右側(cè)時,∠EAB=∠DAB﹣∠DAE=30°,
當(dāng)AE在AD左側(cè)時,∠EAB=∠DAB+∠DAE=150°,
∴α=30°或150°
若∠DAE=90°時,
∴∠EAB=∠DAB+∠DAE=180°,
故答案為:30°或150°或180°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CF交AB的延長線于G.
(1)求證:FC=FB;
(2)求證:CG是⊙O的切線;
(3)若FB=FE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于原點(diǎn)O和點(diǎn)A(6,0),拋物線的頂點(diǎn)為B.
(1)求該拋物線的解析式和頂點(diǎn)B的坐標(biāo);
(2)若動點(diǎn)P從原點(diǎn)O出發(fā),以每秒1個長度單位的速度沿線段OB運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時間為t(s).問當(dāng)t為何值時,△OPA是直角三角形?
(3)若同時有一動點(diǎn)M從點(diǎn)A出發(fā),以2個長度單位的速度沿線段AO運(yùn)動,當(dāng)P、M其中一個點(diǎn)停止運(yùn)動時另一個點(diǎn)也隨之停止運(yùn)動.設(shè)它們的運(yùn)動時間為t(s),連接MP,當(dāng)t為何值時,四邊形ABPM的面積最。坎⑶蟠俗钚≈担
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖點(diǎn)P為雙曲線上一動點(diǎn).連接OP并延長到點(diǎn)A,使,過點(diǎn)A作x軸的垂線,垂足為B,交雙曲線于點(diǎn)C.當(dāng)時,連接PC,將沿直線PC進(jìn)行翻折,則翻折后的與四邊形BOPC的重疊部分(圖中陰影部分)的面積是_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是的中點(diǎn),連接AC并延長至點(diǎn)D,使CD=AC,點(diǎn)E是OB上一點(diǎn),且,CE的延長線交DB的延長線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:BD是⊙O的切線;(2)當(dāng)OB=2時,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D.
(1)求證:AC平分∠DAB;
(2)求證:AC2=ADAB;
(3)若AD=,sinB=,求線段BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,P是BC上一動點(diǎn),過P作AP的垂線交CD于E,將翻折得到,延長FP交AB于H,連結(jié)AE,PE交AC于G.
(1)求證;
(2)當(dāng)時,求AE的長;
(3)當(dāng)時,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com