如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=
114
時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無(wú)可能,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)
分析:(1)根據(jù)O、E的坐標(biāo)即可確定拋物線的解析式,進(jìn)而求出其頂點(diǎn)坐標(biāo),即可得出所求的結(jié)論;
(2)①當(dāng)t=
11
4
時(shí),OA=AP=
11
4
,由此可求出P點(diǎn)的坐標(biāo),將其代入拋物線的解析式中進(jìn)行驗(yàn)證即可;
②此題要分成兩種情況討論:
一、PN=0時(shí),即t=0或t=3時(shí),以P、N、C、D為頂點(diǎn)的多邊形是△PCD,以CD為底AD長(zhǎng)為高即可求出其面積;
二、PN≠0時(shí),即0<t<3時(shí),以P、N、C、D為頂點(diǎn)的多邊形是梯形PNCD,根據(jù)拋物線的解析式可表示出N點(diǎn)的縱坐標(biāo),從而得出PN的長(zhǎng),根據(jù)梯形的面積公式即可求出此時(shí)S、t的函數(shù)關(guān)系式,令S=5,可得到關(guān)于t的方程,若方程有解,根據(jù)求得的t值即可確定N點(diǎn)的坐標(biāo),若方程無(wú)解,則說(shuō)明以P、N、C、D為頂點(diǎn)的多邊形的面積不可能為5.
解答:解:(1)因拋物線y=-x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0)和點(diǎn)E(4,0),
故可得c=0,b=4,
所以拋物線的解析式為y=-x2+4x(1分),
由y=-x2+4x,y=-(x-2)2+4,
得當(dāng)x=2時(shí),該拋物線的最大值是4;(2分)

(2)①點(diǎn)P不在直線ME上;
已知M點(diǎn)的坐標(biāo)為(2,4),E點(diǎn)的坐標(biāo)為(4,0),
設(shè)直線ME的關(guān)系式為y=kx+a;
于是得,
4k+a=0
2k+a=4
,
解得:
k=-2
a=8
,
所以直線ME的關(guān)系式為y=-2x+8;(3分)
由已知條件易得,當(dāng)t=
11
4
時(shí),OA=AP=
11
4
,P(
11
4
,
11
4
)(4分)
∵P點(diǎn)的坐標(biāo)不滿足直線ME的關(guān)系式y(tǒng)=-2x+8;
∴當(dāng)t=
11
4
時(shí),點(diǎn)P不在直線ME上;(5分)
②以P、N、C、D為頂點(diǎn)的多邊形面積可能為5
∵點(diǎn)A在x軸的非負(fù)半軸上,且N在拋物線上,
∴OA=AP=t;
∴點(diǎn)P、N的坐標(biāo)分別為(t,t)、(t,-t2+4t)(6分)
∴AN=-t2+4t(0≤t≤3),
∴AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)≥0,
∴PN=-t2+3t(7分)
(ⅰ)當(dāng)PN=0,即t=0或t=3時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是三角形,此三角形的高為AD,
∴S=
1
2
DC•AD=
1
2
×3×2=3;
(ⅱ)當(dāng)PN≠0時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是四邊形
∵PN∥CD,AD⊥CD,
∴S=
1
2
(CD+PN)•AD=
1
2
[3+(-t2+3t)]×2=-t2+3t+3(8分)
當(dāng)-t2+3t+3=5時(shí),解得t=1、2(9分)
而1、2都在0≤t≤3范圍內(nèi),故以P、N、C、D為頂點(diǎn)的多邊形面積為5
綜上所述,當(dāng)t=1、2時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形面積為5,
當(dāng)t=1時(shí),此時(shí)N點(diǎn)的坐標(biāo)(1,3)(10分)
當(dāng)t=2時(shí),此時(shí)N點(diǎn)的坐標(biāo)(2,4).(11分)
說(shuō)明:(ⅱ)中的關(guān)系式,當(dāng)t=0和t=3時(shí)也適合,(故在閱卷時(shí)沒(méi)有(。挥校áⅲ┮部梢,不扣分)
點(diǎn)評(píng):本題是二次函數(shù)的綜合題型,其中涉及的知識(shí)點(diǎn)有拋物線的頂點(diǎn)坐標(biāo)的求法、圖形的面積求法以及二次函數(shù)的應(yīng)用.在求有關(guān)動(dòng)點(diǎn)問(wèn)題時(shí)要注意分析題意分情況討論結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖1,已知矩形ABED,點(diǎn)C是邊DE的中點(diǎn),且AB=2AD.
(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)保持圖1中△ABC固定不變,繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖2中(當(dāng)垂線段AD、BE在直線MN的同側(cè)),試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明;
(3)保持圖2中△ABC固定不變,繼續(xù)繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當(dāng)垂線段AD、BE在直線MN的異側(cè)).試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知矩形OABC中,OC=10,OA=6,在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E、F,將△OEF沿EF對(duì)折,使O點(diǎn)落在AB邊上的D點(diǎn).
(1)當(dāng)點(diǎn)E取在點(diǎn)A上,得圖2,求出相應(yīng)的OF的長(zhǎng);
(2)寫(xiě)出OF的取值范圍;
(3)在如圖1中過(guò)點(diǎn)D作DG∥AO交EF于點(diǎn)T,交OC于點(diǎn)G,連接OT,得到圖3
①證明四邊形OEDT是菱形;
②設(shè)AD長(zhǎng)為x,請(qǐng)你利用所學(xué)的函數(shù)及其圖象的有關(guān)知識(shí)判斷,當(dāng)x取什么值時(shí),菱形OEDT的周長(zhǎng)L取最大值,并求出周長(zhǎng)L的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶安區(qū)二模)如圖1,已知矩形ABCD中,AB=
4
3
BC
,O是矩形ABCD的中心,過(guò)點(diǎn)O作OE⊥AB于E,作OF⊥BC于F,得矩形BEOF.
(1)線段AE與CF的數(shù)量關(guān)系是
AE=
4
3
CF;
AE=
4
3
CF;
,直線AE與CF的位置關(guān)系是
AE⊥CF
AE⊥CF
;
(2)固定矩形ABCD,將矩形BEOF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到如圖2的位置,連接AE、CF.那么(1)中的結(jié)論是否依然成立?請(qǐng)說(shuō)明理由;
(3)若AB=8,當(dāng)矩形BEOF旋轉(zhuǎn)至點(diǎn)O在CF上時(shí)(如圖3),設(shè)OE與BC交于點(diǎn)P,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•下關(guān)區(qū)一模)如圖1,已知矩形ABCD中,AB=5,AD=4,點(diǎn)M在線段CD上,連接AM.把矩形沿一條直線EF折疊,使點(diǎn)A與點(diǎn)M重合.

(1)作出直線EF (保留作圖痕跡,不寫(xiě)作法);
(2)當(dāng)直線EF經(jīng)過(guò)點(diǎn)B時(shí),連接BM,求△BCM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案