【題目】用橡皮泥做一個棱長為4cm的正方體.
(1)如圖(1),在頂面中心位置處從上到下打一個邊長為1cm的正方形通孔,打孔后的橡皮泥的表面積是多少?;
(2)如果在第(1)題打孔后,再在正面中心位置處(按圖(2)中的虛線)從前到后打一個邊長為1cm的正方形通孔,那么打孔后的橡皮泥的表面積為是多少?;
(3)如果把第(2)題中從前到后所打的正方形通孔擴大成一個長xcm、寬1cm的長方形通孔,能不能使所得橡皮泥的表面積為130cm2?如果能,請求出x;如果不能,請說明理由.
【答案】(1) 110;(2) 118;(3) x=3.
【解析】
(1)打孔后的表面積=原正方體的表面積-小正方形孔的面積+孔中的四個矩形的面積.
(2)打孔后的表面積=圖(1)的表面積-4個小正方形孔的面積+新打的孔中的八個小矩形的面積
(3)分兩種情形分別列出方程求解即可.
解:(1)表面積S1=96-2+4×4=110(cm2);
故答案為110.
(2)表面積S2=S1-4+4×1.5×2=118(cm2);
故答案為118.(3)能使橡皮泥塊的表面積為130cm2,理由為:
①如圖甲通孔,由題意,96-2-2(4-x)+3(2+2x)=130,
方程無解,不合題意.
②如圖乙通孔,由題意,96-2-2x+4×3+4(2+2x)-2=130,
解得x=3,
∴當邊長改為3cm時,表面積為130cm2.
科目:初中數學 來源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當△EFC為直角三角形時,BE的長為 .
【答案】3或6
【解析】試題分析:
由題意可知有兩種情況,見圖1與圖2;
圖1:當點F在對角線AC上時,∠EFC=90°,
∵∠AFE=∠B=90°,∠EFC=90°,
∴點A、F、C共線,
∵矩形ABCD的邊AD=8,
∴BC=AD=8,
在Rt△ABC中,AC==10,
設BE=x,則CE=BC﹣BE=8﹣x,
由翻折的性質得,AF=AB=6,EF=BE=x,
∴CF=AC﹣AF=10﹣6=4,
在Rt△CEF中,EF2+CF2=CE2,
即x2+42=(8﹣x)2,
解得x=3,
即BE=3;
圖2:當點F落在AD邊上時,∠CEF=90°,
由翻折的性質得,∠AEB=∠AEF=×90°=45°,
∴四邊形ABEF是正方形,
∴BE=AB=6,
綜上所述,BE的長為3或6.
故答案為:3或6.
考點:1、軸對稱(翻折變換);2、勾股定理
【題型】填空題
【結束】
15
【題目】計算:()﹣2﹣+(﹣4)0﹣cos45°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某研究性學習小組進行了探究活動.如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.
(1)求這個梯子頂端A距地面有多高;
(2)如果梯子的頂端A下滑4 m到點C,那么梯子的底部B在水平方向上滑動的距離BD=4 m嗎?為什么?
(3)亮亮在活動中發(fā)現(xiàn)無論梯子怎么滑動,在滑動的過程中梯子上總有一個定點到墻角O的距離始終是不變的定值,會思考問題的你能說出這個點并說明其中的道理嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一張長為7cm,寬為5cm的矩形紙片上,現(xiàn)在剪下一個腰長為4cm的等腰三角形,要求等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上,則剪下的等腰三角形一腰上的的高為_____________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如下圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E.
(1)求證:AB=BE;
(2)若PA=2,cosB=,求⊙O半徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據你所學的知識,回答下列問題:
(1)小明總共剪開了 條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在圖上補 全.(請在備用圖中畫出所有可能)
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的4倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是720cm,求這個長方體紙盒的體積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2014年1月,國家發(fā)改委出臺指導意見,要求2015年底前,所有城市原則上全面實行居民階梯水價制度.小明為了解市政府調整水價方案的社會反響,隨機訪問了自己居住小區(qū)的部分居民,就“每月每戶的用水量”和“調價對用水行為改變”兩個問題進行調查,并把調查結果整理繪制成下面的統(tǒng)計圖(圖1,圖2).
小明發(fā)現(xiàn)每月每戶的用水量在5m3-35m3之間,有8戶居民對用水價格調價漲幅抱無所謂,不會考慮用水方式的改變,根據小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:
(Ⅰ)n= ,小明調查了 戶居民,并補全圖2;
(Ⅱ)每月每戶用水量的中位數和眾數分別落在什么范圍?
(Ⅲ)如果小明所在小區(qū)有1800戶居民,請你估計“視調價漲幅采取相應的用水方式改變”的居民戶數有多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數y=在第一象限的圖象經過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是( 。
A. 3 B. 4 C. 5 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com