【題目】如圖,在中,,點(diǎn)的中點(diǎn),過點(diǎn),垂足在線段上,連接,

(1)求證:

(2),則 °

【答案】1)見解析;(2105.

【解析】

1)分別延長,交于點(diǎn),先證明BF=FG,再證明的中線即可得到結(jié)論;

2)設(shè)∠FEB=x,則∠FBE=x,求得∠EFB=180°-2x,∠AFB=90°-x,證明∠AFE=3DEF即可求得結(jié)論.

(1) 證明:如圖,分別延長,交于點(diǎn),

∵四邊形是平行四邊形.

,

的中點(diǎn),

.

中,

.

的中線.

,

.

,

.

(2)

∴∠FEB=FBE

設(shè)∠FEB=x,則∠FBE=x,

AB//CD, BECD

∴∠ABE=90

∴∠ABF=AFB=90°-x,

∴∠EFB=180°-2x,

∴∠EFA=90°-x+180°-2x=270°-3x,

∵∠DEF=90°-x,且

∴∠AFE=3DEF=105°.

故答案為:105°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程 有兩個(gè)不相等的實(shí)數(shù)根,
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實(shí)數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個(gè)單位長度,再向上平移2個(gè)單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求n2﹣4n的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑CD是弦,若AB=10cm,CD=8cm,那么A、B兩點(diǎn)到直線CD的距離之和為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,DM,EN分別垂直平分AB和AC,交BC于點(diǎn)D,E,若∠DAE=50°°,則∠BAC=________,若△ADE的周長為19cm,則BC=_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由趙爽弦圖變化得到的,它由八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為,,則的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,已知分別是上的兩點(diǎn),且

求梯形的面積;

如圖②,有一梯形與梯形重合,固定,將梯形向右運(yùn)動,當(dāng)點(diǎn)D與點(diǎn)C重合時(shí)梯形停止運(yùn)動;

①若某時(shí)段運(yùn)動后形成的四邊形中,求運(yùn)動路程的長,并求此時(shí)的值;

②設(shè)運(yùn)動中的長度為,試用含的代數(shù)式表示梯形重合部分面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O是矩形ABCD的對角線的交點(diǎn),DEAC,CEBD

1)求證:OEDC

2)若∠AOD120°,DE2,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 ,且 的距離為1, 的距離為2,等腰 △ABC的頂點(diǎn)分別在直線 , 上,AB=AC,∠BAC=120° ,則等腰三角形的底邊長為

查看答案和解析>>

同步練習(xí)冊答案