【題目】如圖,在平面直角坐標系xoy中,點A(3,3),點B(4,0),點C(0,-1).

1以點C為中心,把△ABC逆時針旋轉90°,畫出旋轉后的圖形△A’B’C’(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);

2)在(1)的條件下,

點A經(jīng)過的路徑AA’的長為________;(結果保留)

寫出B’的坐標為________.

【答案】(1)見解析;(2)①;②(-1,3)

【解析】

1)根據(jù)旋轉的定義分別作出點A、B饒點C逆時針旋轉90°所得的對應點,再順次連結即可.

2)①根據(jù)(1)中所作的圖求得半徑AC的長,再由扇形的弧長公式即可得出答案;②由(1)中所作圖即可得出答案.

解:(1)如圖所示:△ABC'即為所求.

2)①依題可得:

AC==5,∠ACA=90°,

∴點A經(jīng)過的路徑AA'長為:=.

故答案為:.

②由圖可知B'坐標為(-1,3.

故答案為:(-1,3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象過點(﹣20),對稱軸為直線x1.有以下結論:①abc0;②7a+c0;③a+bmam+b)(m為任意實數(shù))④若Ax1,m),Bx2,m)是拋物線上的兩點,當xx1+x2時,yc;⑤若方程ax+2)(4x)=﹣1的兩根為x1,x2,且x1x2,則﹣2≤x1x24.其中正確結論的個數(shù)有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4AD=2EAB的中點,FEC上一動點,PDF中點,連接PB,則PB的最小值是( )

A.2B.4C.D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠C=90°,AC=4cm,BC=5cm,DBC上,且CD=3cm,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P1cm/s的速度,沿AC向終點C移動;點Qcm/s的速度沿BC向終點C移動.過點PPEBCAD于點E,連接EQ.設動點運動時間為x秒.

1)周含x的代表數(shù)式表示AE、DE的長度;

2)當點QBD(不包括點B、D)上移動時,設△EDQ的面積為y(cm),求yx的函數(shù)關系式,并寫出自變量x的取值范圍;

3)當x為何值時,△EDQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P是⊙O外一點,PO交圓O于點C,OC=CP=2,弦ABOC,劣弧AB的度數(shù)為120°,連接PB.

(1)求BC的長;

(2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,點是線段上任意一點,過點于點,過點于點,過點于點.設線段的長為

1)用含的代數(shù)式表示線段的長.

2)當四邊形為菱形時,求的值.

3)設與矩形重疊部分圖形的面積為,求之間的函數(shù)關系式.

4)連結、,當垂直或平行時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.

(1)畫出△A1OB1.

(2)在旋轉過程中點B所經(jīng)過的路徑長為_______.

(3)求在旋轉過程中線段AB掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,AC平分∠BAD,連接BF.

(1)求證:ADED;

(2)若CD=4,AF=2,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案