【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+mx+n經(jīng)過點(diǎn)B(6,1),C(5,0),且與y軸交于點(diǎn)A.
(1)求拋物線的表達(dá)式及點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是y軸右側(cè)拋物線上的一點(diǎn),過點(diǎn)P作PQ⊥OA,交線段OA的延長線于點(diǎn)Q,如果∠PAB=45°.求證:△PQA∽△ACB;
(3)若點(diǎn)F是線段AB(不包含端點(diǎn))上的一點(diǎn),且點(diǎn)F關(guān)于AC的對(duì)稱點(diǎn)F′恰好在上述拋物線上,求FF′的長.
【答案】(1)y=x2﹣x+5,點(diǎn)A坐標(biāo)為(0,5);(2)詳見解析;(3).
【解析】
(1)將點(diǎn)B、C代入拋物線解析式y=x2+mx+n即可;
(2)先證△ABC為直角三角形,再證∠QAP+∠CAB=90°,又因∠AQP=∠ACB=90°,即可證△PQA∽△ACB;
(3)做點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B',求出BB'的坐標(biāo),直線AB'的解析式,即可求出點(diǎn)F'的坐標(biāo),接著求直線FF'的解析式,求出其與AB的交點(diǎn)即可.
解:(1)將B(6,1),C(5,0)代入拋物線解析式y=x2+mx+n,
得
解得,m=﹣,n=5,
則拋物線的解析式為:y=x2﹣x+5,點(diǎn)A坐標(biāo)為(0,5);
(2)∵AC=,BC=,AB=,
∴AC2+BC2=AB2,
∴△ABC為直角三角形,且∠ACB=90°,
當(dāng)∠PAB=45°時(shí),點(diǎn)P只能在點(diǎn)B右側(cè),過點(diǎn)P作PQ⊥y 軸于點(diǎn)Q,
∴∠QAB+∠OAB=180°﹣∠PAB=135°,
∴∠QAP+∠CAB=135°﹣∠OAC=90°,
∵∠QAP+∠QPA=90°,∴∠QPA=∠CAB,
又∵∠AQP=∠ACB=90°,∴△PQA∽△ACB;
(3)做點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B',則A,F',B'三點(diǎn)共線,
由于AC⊥BC,根據(jù)對(duì)稱性知點(diǎn)B'(4,﹣1),
將B'(4,﹣1)代入直線y=kx+5,
∴k=﹣,∴yAB'=﹣x+5,
聯(lián)立解得,x1=,x2=0(舍去),
則F'(,﹣),
將B(6,1),B'(4,﹣1)代入直線y=mx+n,
得,解得,∴yBB'=x﹣5,
由題意知,kFF'=KBB',∴設(shè)yFF'=x+b,
將點(diǎn)F'(,﹣)代入,得,b=﹣,
∴yFF'=x﹣,
聯(lián)立解得,
∴F(,),
則FF'==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點(diǎn)為線段外一動(dòng)點(diǎn),且,,填空:當(dāng)點(diǎn)位于__________時(shí),線段的長取到最大值__________,且最大值為;(用含、的式子表示).
(2)如圖2,若點(diǎn)為線段外一動(dòng)點(diǎn),且,,分別以,為邊,作等邊和等邊,連接,.
①圖中與線段相等的線段是線段__________,并說明理由;
②直接寫出線段長的最大值為__________.
(3)如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)為線段外一動(dòng)點(diǎn),且,,,請(qǐng)直接寫出線段長的最大值為__________,及此時(shí)點(diǎn)的坐標(biāo)為__________.(提示:等腰直角三角形的三邊長、、滿足)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=x+1交y軸于點(diǎn)A1,在x軸正方向上取點(diǎn)B1,使OB1=OA1;過點(diǎn)B1作A2B1⊥x軸,交L于點(diǎn)A2,在x軸正方向上取點(diǎn)B2,使B1B2=B1A2;過點(diǎn)B2作A3B2⊥x軸,交L于點(diǎn)A3,在x軸正方向上取點(diǎn)B3,使B2B3=B2A3;…記△OA1B1面積為S1,△B1A2B2面積為S2,△B2A3B3面積為S3,…則S2019等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實(shí)踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機(jī)器人、陶藝制作“四門創(chuàng)客課程記為A、B、C、D,為了解學(xué)生對(duì)這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對(duì)全校學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成兩幅均不完整的統(tǒng)計(jì)圖表:
創(chuàng)客課程 | 頻數(shù) | 頻率 |
“3D”打印 | 36 | 0.45 |
數(shù)學(xué)編程 | 0.25 | |
智能機(jī)器人 | 16 | b |
陶藝制作 | 8 | |
合計(jì) | a | 1 |
請(qǐng)根據(jù)圖表中提供的信息回答下列問題:
(1)統(tǒng)計(jì)表中的a=______,b=______;
(2)“陶藝制作”對(duì)應(yīng)扇形的圓心角為______;
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校300名學(xué)生中最喜歡“智能機(jī)器人”創(chuàng)客課程的人數(shù);
(4)學(xué)校為開設(shè)這四門課程,預(yù)計(jì)每生A、B、C、D四科投資比為4:3:6:7,若“3D打印課程每人投資200元,求學(xué)校為開設(shè)創(chuàng)客課程,需為學(xué)生人均投入多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)在邊上,聯(lián)結(jié),將繞著點(diǎn)旋轉(zhuǎn),使得點(diǎn)與邊的中點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),則的長等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2的圖象如圖所示.已知A點(diǎn)坐標(biāo)為(1,1),過點(diǎn)A作AA1∥x軸交拋物線于點(diǎn)A1,過點(diǎn)A1作A1A2∥OA交拋物線于點(diǎn)A2,過點(diǎn)A2作A2A3∥x軸交拋物線于點(diǎn)A3,過點(diǎn)A3作A3A4∥OA交拋物線于點(diǎn)A4……,依次進(jìn)行下去,則點(diǎn)A2019的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)為M的拋物線y=ax2+bx+3與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C
(1)求拋物線的表達(dá)式;
(2)在直線AC的上方的拋物線上,有一點(diǎn)P(不與點(diǎn)M重合),使△ACP的面積等于△ACM的面積,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)在y軸上是否存在一點(diǎn)Q,使得△QAM為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能是來自太陽的輻射能量,對(duì)于地球上的人類來說,太陽能是對(duì)環(huán)境無任何污染的可再生能源,因此許多國家都在大陸發(fā)展太陽能.如圖是2013-2017年我國光伏發(fā)電裝機(jī)容量統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖提供的信息,判斷下列說法不合理的是( 。
A.截至2017年底,我國光伏發(fā)電累計(jì)裝機(jī)容量為13078萬千瓦
B.2013-2017年,我國光伏發(fā)電新增裝機(jī)容量逐年增加
C.2013-2017年,我國光伏發(fā)電新增裝機(jī)容量的平均值約為2500萬千瓦
D.2017年我國光伏發(fā)電新增裝機(jī)容量大約占當(dāng)年累計(jì)裝機(jī)容量的40%
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com