在直角坐標系中,有一函數(shù)y=2x的圖象,若將以圖象是向上平移3個單位,再向下平移2個單位,此時的圖象與原來的圖象有什么關(guān)系?寫出兩次平移后的函數(shù)的關(guān)系式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當?shù)狞cE,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(Ⅰ)求證:△POE∽△BAP;
(Ⅱ)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(Ⅲ)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數(shù)關(guān)系式;
(Ⅳ)在(Ⅲ)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟寧)如圖,在平面直角坐標系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.
(1)請寫出旋轉(zhuǎn)中心的坐標是
O(0,0)
O(0,0)
,旋轉(zhuǎn)角是
90
90
度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出△A1AC1順時針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)如圖,在平面直角坐標系中,有一條直線l:y=-
3
3
x+4
與x軸、y軸分別交于點M、N,一個高為3的等邊三角形ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移.
(1)在平移過程中,得到△A1B1C1,此時頂點A1恰落在直線l上,寫出A1點的坐標
3
,3)
3
,3)
;
(2)繼續(xù)向右平移,得到△A2B2C2,此時它的外心P恰好落在直線l上,求P點的坐標;
(3)在直線l上是否存在這樣的點,與(2)中的A2、B2、C2任意兩點能同時構(gòu)成三個等腰三角形?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) (下冊) (配華東師大版新課標) 華東師大版新課標 題型:044

如圖所示,將一個下底為3,上底為1,且底角為45°的等腰梯形ABCD放置在直角坐標系中,有一條動直線x=t,從點A開始自左向右勻速運動,至B點處停止運動,它掃過梯形面積為S,如圖中陰影部分.

(1)求出梯形A,B,C,D各頂點的坐標;

(2)求過B,C兩點的直線的關(guān)系式;

(3)求出S關(guān)于t之間的函數(shù)關(guān)系式(從三種情況去考慮:①-1≤t≤0,②0<t≤1,③1<t≤2).

查看答案和解析>>

同步練習(xí)冊答案