【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“幸”、“!、“聊”、“城”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個(gè)球,球上的漢字剛好是“!钡母怕蕿槎嗌伲
(2)小穎從中任取一球,記下漢字后放回袋中,然后再?gòu)闹腥稳∫磺,求小穎取出的兩個(gè)球上漢字恰能組成“幸!被颉傲某恰钡母怕剩

【答案】
(1)解:∵一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“幸”、“!、“聊”、“城”的四個(gè)小球,

∴從中任取一個(gè)球,球上的漢字剛好是“!钡母怕蕿椋


(2)解:畫(huà)樹(shù)狀圖得:

∵共有16種不同取法,能滿(mǎn)足要求的有4種,

∴小穎取出的兩個(gè)球上漢字恰能組成“幸福”或“聊城”的概率= =


【解析】(1)由一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“幸”、“福”、“聊”、“城”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,由概率公式求解即可求得答案;(2)首先根據(jù)題意列舉出所有可能的結(jié)果與取出的兩個(gè)球上的漢字恰能組成“幸!被颉傲某恰钡那闆r,再利用概率公式即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.

(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,購(gòu)買(mǎi)一種蘋(píng)果,所付款金額y(元)與購(gòu)買(mǎi)量x(千克)之間的函數(shù)圖象由線(xiàn)段OA和射線(xiàn)AB組成,則一次購(gòu)買(mǎi)5千克這種蘋(píng)果比分五次購(gòu)買(mǎi)1千克這種蘋(píng)果可節(jié)。ā 。┰

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E是AB上一點(diǎn),點(diǎn)F是AD延長(zhǎng)線(xiàn)上一點(diǎn),且DF=BE,連接CE、CF.

(1)求證:CE=CF.

(2)在圖1中,若點(diǎn)G在AD上,且GCE=45°,則GE=BE+GD成立嗎?為什么?

(3)根據(jù)你所學(xué)的知識(shí),運(yùn)用(1)、(2)解答中積累的經(jīng)驗(yàn),完成下列各題,如圖2,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.

若AE=6,DE=10,求AB的長(zhǎng);

若AB=BC=9,BE=3,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在邊長(zhǎng)為2的等邊三角形ABC中,GBC的中點(diǎn),DAG的中點(diǎn),過(guò)點(diǎn)DEFBCABE,交ACF,P是線(xiàn)段EF上一個(gè)動(dòng)點(diǎn),連接BP,GP,則BPG的周長(zhǎng)的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且AD=DC,過(guò)A,B,D三點(diǎn)作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線(xiàn);
(2)若sinC= ,AC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,對(duì)角線(xiàn)AC與BD交于點(diǎn)O;在Rt△PMN中,∠MPN=90°.

(1)如圖1,若點(diǎn)P與點(diǎn)O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點(diǎn)E、F,請(qǐng)直接寫(xiě)出PE與PF的數(shù)量關(guān)系;
(2)將圖1中的Rt△PMN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角度α(0°<α<45°).
①如圖2,在旋轉(zhuǎn)過(guò)程中(1)中的結(jié)論依然成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
②如圖2,在旋轉(zhuǎn)過(guò)程中,當(dāng)∠DOM=15°時(shí),連接EF,若正方形的邊長(zhǎng)為2,請(qǐng)直接寫(xiě)出線(xiàn)段EF的長(zhǎng);
③如圖3,旋轉(zhuǎn)后,若Rt△PMN的頂點(diǎn)P在線(xiàn)段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),猜想此時(shí)PE與PF的數(shù)量關(guān)系,并給出證明;當(dāng)BD=mBP時(shí),請(qǐng)直接寫(xiě)出PE與PF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是菱形.若點(diǎn)A的坐標(biāo)是(3,4),點(diǎn)C的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,將兩個(gè)正方形(每個(gè)角都是的一個(gè)頂點(diǎn)重合放置,若,求的度數(shù);

(2)如圖2,將三個(gè)正方形的一個(gè)頂點(diǎn)重合放置,若,的度數(shù);

(3)如圖3,將三個(gè)正方形的一個(gè)頂點(diǎn)重合放置,若平分,那么平分嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案