如圖,AB為⊙O的直徑,弦CD⊥AB,點(diǎn)E為上一點(diǎn),若∠CEA=28°,則
∠D=_______°。
62
本題關(guān)鍵是理清弧的關(guān)系,找出等弧,則可根據(jù)“同圓中等弧對(duì)等角”求解.
解:由垂徑定理可知,又根據(jù)在同圓或等圓中相等的弧所對(duì)的圓周角也相等的性質(zhì)可知∠ABD=∠CEA=28度.所以∠D=90°-28°=62°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)如圖,在平面直角坐標(biāo)系內(nèi),為原點(diǎn),點(diǎn)的坐標(biāo)為經(jīng)過(guò)兩點(diǎn)作半徑為軸的負(fù)半軸于點(diǎn)

(1)求點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)作的切線交軸于點(diǎn)求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知正六邊形的半徑為,則它的外接圓與內(nèi)切圓組成的圓環(huán)的面積是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,分別以ABAC為直徑在△ABC外作半圓和半圓,其中分別為兩個(gè)半圓的圓心. F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個(gè)半圓圓弧的中點(diǎn).

(1)連結(jié),
證明:
(2)如圖,過(guò)點(diǎn)A分別作半圓和半圓的切線,交BD的延長(zhǎng)線和CE的延長(zhǎng)線于點(diǎn)P和點(diǎn)Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長(zhǎng);

(3)如圖三,過(guò)點(diǎn)A作半圓的切線,交CE的延長(zhǎng)線于點(diǎn)Q,過(guò)點(diǎn)Q作直線FA的垂線,交BD的延長(zhǎng)線于點(diǎn)P,連結(jié)PA. 證明:PA是半圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑為__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,⊙O的直徑為10,弦AB的長(zhǎng)為8,M是弦AB上的動(dòng)點(diǎn),則OM的長(zhǎng)的取值范圍(    )

      
A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分l4分)如圖,已知AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)H.
(1)求證:AH·AB=AC2
(2)若過(guò)點(diǎn)A的直線與弦CD(不含端點(diǎn))相交于點(diǎn)E,與⊙O相交于點(diǎn)F,求證:AE·AF=AC2;
(3)若過(guò)點(diǎn)A的直線與直線CD相交于點(diǎn)P,與⊙O相交于點(diǎn)Q,判斷AP·AQ=AC2是否成立(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是⊙O的直徑,弦CD∥AB,若∠ABD=65°,則∠  ADC=____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖, 已知⊙O.

(1)用尺規(guī)作正六邊形, 使得⊙O是這個(gè)正六邊形的外接圓, 并保留作圖痕跡;
(2)用兩種不同的方法把所做的正六邊形分割成六個(gè)全等的三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案