(2011•寧夏)在等腰△ABC中,AB=AC=5,BC=6.動點M、N分別在兩腰AB、AC上(M不與A、B重合,N不與A、C重合),且MN∥BC.將△AMN沿MN所在的直線折疊,使點A的對應點為P.
(1)當MN為何值時,點P恰好落在BC上?
(2)當MN=x,△MNP與等腰△ABC重疊部分的面積為y,試寫出y與x的函數(shù)關(guān)系式.當x為何值時,y的值最大,最大值是多少?
解:(1)連接AP,交MN于O,
∵將△AMN沿MN所在的直線折疊,使點A的對應點為P,
∴OA=OP,AP⊥MN,AN=PN,AM=PM,
∵MN∥BC,
∴△AMN∽△ABC,AO⊥MN,
∴,
∵BC=6,
∴MN=3,
∴當MN=3時,點P恰好落在BC上;
(2)過點A作AD⊥BC于D,交MN于O,
∵MN∥BC,
∴AO⊥MN,
∴△AMN∽△ABC,
∴,
∵AB=AC=5,BC=6,AD⊥BC,
∴∠ADB=90°,BD=BC=3,
∴AD=4,
∴,
∴AO=x,[來源:Z。xx。k.Com]
∴S△AMN=MN•AO=•x•x=x2,
當AO≤AD時,
根據(jù)題意得:S△PMN=S△AMN,
∴△MNP與等腰△ABC重疊部分的面積為S△AMN,
∴y=x2,
∴當AO=AD時,即MN=BC=3時,y最小,最小值為3;
當AO>AD時,
連接AP交MN于O,
則AO⊥MN,
∵MN∥BC,
∴AP⊥BC,△AMN∽△ABC,△PEF∽△PMN∽△AMN,
∴,,
即:,,
∴AO=x,
∴,
∴EF=2x﹣6,OD=AD﹣AO=4﹣x,
∴y=S梯形MNFE=(EF+MN)•OD=×(2x﹣6+x)×(4﹣x)=﹣(x﹣4)2+4,
∴當x=4時,y有最大值,最大值為4,
綜上所述:當x=4時,y的值最大,最大值是4.
解析
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(寧夏卷)數(shù)學解析版 題型:解答題
(2011•寧夏)在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若將此直角三角形的一條直角邊BC或AC與x軸重合,使點A或點B剛好在反比例函數(shù)(x>0)的圖象上時,設(shè)△ABC在第一象限部分的面積分別記做S1、S2(如圖1、圖2所示)D是斜邊與y軸的交點,通過計算比較S1、S2的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com