【題目】在平面直角坐標(biāo)系中,若直線y=kx+b經(jīng)過第一、三、四象限,則直線y=bx+k不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)關(guān)于x的二次三項(xiàng)式,二次項(xiàng)的系數(shù)是﹣1,一次項(xiàng)的系數(shù)和常數(shù)項(xiàng)都是2,則這個(gè)多項(xiàng)式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對應(yīng)值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵民眾節(jié)約用電,城鎮(zhèn)居民生活用電電費(fèi)目前實(shí)行梯度收費(fèi),具體標(biāo)準(zhǔn)如下表:
月用電量(單位:千瓦時(shí)) | 單價(jià)(單位:元) |
150以內(nèi)(含150) | 0.5 |
超過150但不超過300的部分(含300) | 0.6 |
300以上(不含300)的部分 | 0.8 |
(1)若月用電100千瓦時(shí),應(yīng)交電費(fèi)多少元?若月用電200千瓦時(shí),應(yīng)交電費(fèi)多少元?
(2)若某用戶12月應(yīng)交電費(fèi)93元,該用戶12月的用電量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段 AB=24,動點(diǎn) P 從 A 出發(fā),以每秒 2 個(gè)單位的速度沿射線 AB運(yùn)動,運(yùn)動時(shí)間為 t 秒(t>0),M 為 AP 的中點(diǎn).
(1)當(dāng)點(diǎn) P 在線段 AB 上運(yùn)動時(shí),
①當(dāng) t 為多少時(shí),PB=2AM?②求2BM-BP的值.
(2)當(dāng) P 在 AB 延長線上運(yùn)動時(shí),N 為 BP 的中點(diǎn),說明線段 MN 的長度不變,并 求出其值.
(3)在 P 點(diǎn)的運(yùn)動過程中,是否存在這樣的 t 的值,使 M、N、B 三點(diǎn)中的一個(gè)點(diǎn) 是以其余兩點(diǎn)為端點(diǎn)的線段的中點(diǎn),若有,請求出 t 的值;若沒有,請說明理 由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為1,其面積記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為S2 , …按此規(guī)律繼續(xù)下去,則S9的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,將△COD繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)得到△C1OD1,旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1,AC1與BD1交于點(diǎn)P.
(1)如圖1,若四邊形ABCD是正方形.
①求證:△AOC1≌△BOD1.
②請直接寫出AC1 與BD1的位置關(guān)系.
(2)如圖2,若四邊形ABCD是菱形,AC=6,BD=8,設(shè)AC1=kBD1.判斷AC1與BD1的位置關(guān)系,說明理由,并求出k的值.
(3)如圖3,若四邊形ABCD是平行四邊形,AC=6,BD=12,連接DD1,設(shè)AC1=kBD1.直接寫出k的值和AC12+(kDD1)2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com