【題目】如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點(diǎn)C落在第二象限.其斜邊兩端點(diǎn)A、B分別落在x軸、y軸上且AB=12cm

(1)若OB=6cm.

①求點(diǎn)C的坐標(biāo);

②若點(diǎn)A向右滑動(dòng)的距離與點(diǎn)B向上滑動(dòng)的距離相等,求滑動(dòng)的距離;

(2)點(diǎn)C與點(diǎn)O的距離的最大值是多少cm.

【答案】(1)①點(diǎn)C的坐標(biāo)為(-3,9);②滑動(dòng)的距離為6(﹣1)cm;(2)OC最大值12cm.

【解析】

試題(1過(guò)點(diǎn)Cy軸的垂線,垂足為D,根據(jù)30°的直角三角形的性質(zhì)解答即可;設(shè)點(diǎn)A向右滑動(dòng)的距離為x,根據(jù)題意得點(diǎn)B向上滑動(dòng)的距離也為x,根據(jù)銳角三角函數(shù)和勾股定理解答即可;(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),過(guò)CCE⊥x軸,CD⊥y軸,垂足分別為E,D,證得△ACE∽△BCD,利用相似三角形的性質(zhì)解答即可.

試題解析:解:(1過(guò)點(diǎn)Cy軸的垂線,垂足為D,如圖1

Rt△AOB中,AB=12,OB=6,則BC=6

∴∠BAO=30°,∠ABO=60°

∵∠CBA=60°,∴∠CBD=60°∠BCD=30°

∴BD=3,CD=3,

所以點(diǎn)C的坐標(biāo)為(﹣3,9);

設(shè)點(diǎn)A向右滑動(dòng)的距離為x,根據(jù)題意得點(diǎn)B向上滑動(dòng)的距離也為x,如圖2

AO=12×cos∠BAO=12×cos30°=6

∴A'O=6﹣x,B'O=6+x,A'B'=AB=12

△A'O B'中,由勾股定理得,

6﹣x2+6+x2=122,解得:x=6﹣1),

滑動(dòng)的距離為6﹣1);

2)設(shè)點(diǎn)C的坐標(biāo)為(xy),過(guò)CCE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3

OE=﹣x,OD=y,

∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,

∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,

∴△ACE∽△BCD,

,即,

∴y=﹣x

OC2=x2+y2=x2+x2=4x2,

當(dāng)|x|取最大值時(shí),即Cy軸距離最大時(shí),OC2有最大值,即OC取最大值,如圖,即當(dāng)C'B'旋轉(zhuǎn)到與y軸垂直時(shí).此時(shí)OC=12,

故答案為:12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解下列方程時(shí),配方有錯(cuò)誤的是( )

A.x2﹣2x﹣99=0化為(x﹣1)2=100

B.x2+8x+9=0化為(x+4)2=25

C.2t2﹣7t﹣4=0化為(t﹣2=

D.3x2﹣4x﹣2=0化為(x﹣2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P為正方形ABCD的邊CD上一點(diǎn),BP的垂直平分線EF分別交BC、AD于E、F兩點(diǎn),GP⊥EP交AD于點(diǎn)G,連接BG交EF于點(diǎn) H,下列結(jié)論:①BP=EF;②∠FHG=45°;③以BA為半徑⊙B與GP相切;④若G為AD的中點(diǎn),則DP=2CP.其中正確結(jié)論的序號(hào)是( 。

A. ①②③④ B. 只有①②③ C. 只有①②④ D. 只有①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E、F分別在邊AB、BC、CA上,且DECA,DFBA.

下列四種說(shuō)法:①四邊形AEDF是平行四邊形;②如果BAC=90°,那么四邊形AEDF是矩形;③如果AD平分BAC,那么四邊形AEDF是菱形;④如果ADBC且AB=AC,那么四邊形AEDF是菱形.

其中,正確的有( ) 個(gè).

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)同時(shí)挖掘兩段長(zhǎng)度相等的隧道,如圖是甲、乙兩隊(duì)挖掘隧道長(zhǎng)度()與挖掘時(shí)間(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問(wèn)題:

在前小時(shí)的挖掘中,甲隊(duì)的挖掘速度為 /小時(shí),乙隊(duì)的挖掘速度為 /小時(shí).

①當(dāng)時(shí),求出之間的函數(shù)關(guān)系式;

②開(kāi)挖幾小時(shí)后,兩工程隊(duì)挖掘隧道長(zhǎng)度相差?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,彈性小球從P(20)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到正方形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第一次碰到正方形的邊時(shí)的點(diǎn)為P1,第二次碰到正方形的邊時(shí)的點(diǎn)為P2,第n次碰到正方形的邊時(shí)的點(diǎn)為Pn,則P2020的坐標(biāo)是( 。

A.(5,3)B.(3,5)C.(0,2)D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示

1)根據(jù)圖象信息,當(dāng)t   分鐘時(shí)甲乙兩人相遇,甲的速度為   /分鐘;

2)求出線段AB所表示的函數(shù)表達(dá)式

3)甲、乙兩人何時(shí)相距400米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位運(yùn)動(dòng)員在一段2000米長(zhǎng)的筆直公路上進(jìn)行跑步比賽,比賽開(kāi)始時(shí)甲在起點(diǎn),乙在甲的前面200米,他們同時(shí)同向出發(fā)勻速前進(jìn),甲的速度是8米/秒,乙的速度是6米/秒,先到終點(diǎn)者在終點(diǎn)原地等待.設(shè)甲、乙兩人之間的距離是y米,比賽時(shí)間是x秒,當(dāng)兩人都到達(dá)終點(diǎn)計(jì)時(shí)結(jié)束,整個(gè)過(guò)程中y與之間的函數(shù)圖象是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,公路AB和公路CD在點(diǎn)P處交匯,點(diǎn)E處有一所學(xué)校,EP160米,點(diǎn)E到公路AB的距高EF80米,假若拖拉機(jī)行駛時(shí),周圍100米內(nèi)會(huì)受到噪音影響,那么拖拉機(jī)在公路AB上沿方向行駛時(shí),學(xué)校是否受到影響,請(qǐng)說(shuō)明理由;如果受到影響,已知拖拉機(jī)的速度是18千米/小時(shí),那么學(xué)校受到影響的時(shí)間為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案