【題目】下列運算正確的是(  )
A.51=
B.x2?x3=x6
C.(a+b)2=a2+b2
D.

【答案】A
【解析】解:A、51= ,原式計算正確,故A正確; B、x2x3=x5 , 原式計算錯誤,故B錯誤;
C、(a+b)2=a2+2ab+b2 , 原式計算錯誤,故C錯誤;
D、 不是同類二次根式,不能直接合并,原式計算錯誤,故D錯誤;
故選A.
【考點精析】本題主要考查了整數(shù)指數(shù)冪的運算性質和同底數(shù)冪的乘法的相關知識點,需要掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù))才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將 ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將 CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結論中正確的個數(shù)有( ).

CMP∽ BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當 ABP≌ AND時,BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數(shù).

請完善解答過程,并在括號內填寫相應的理論依據(jù).

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2,在Rt△ABC內部作正方形D1E1F1G1 , 其中點D1 , E1分別在AC,BC邊上,邊F1G1在BC上,它的面積記作S1;按同樣的方法在△CD1E1內部作正方形D2E2F2G2 , 它的面積記作S2 , S2= , …,照此規(guī)律作下去,正方形DnEnFnGn的面積Sn=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,斜坡AB的坡度為1:2.4,長度為26m,在坡頂B所在的平臺上有一座電視塔CD,已知在A處測得塔頂D的仰角為45°,在B處測得塔頂D的仰角為73°,求電視塔CD的高度. (參考數(shù)值:sin73°≈ ,cos73°≈0. ,tan73°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖1、圖2、圖3分別表示甲、乙、丙三人由A地到B地的路線圖(箭頭表示行進的方向).其中E為AB的中點,AH>HB,判斷三人行進路線長度的大小關系為( 。
A.甲<乙<丙
B.乙<丙<甲
C.丙<乙<甲
D.甲=乙=丙

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點A出發(fā)沿AD向點D勻速運動,速度是1cm/s;同時,點Q從點C出發(fā)沿CB方向,在射線CB上勻速運動,速度是2cm/s,過點P作PE∥AC交DC于點E,連接PQ、QE,PQ交AC于F.設運動時間為t(s)(0<t<8),解答下列問題:
(1)當t為何值時,四邊形PFCE是平行四邊形;
(2)設△PQE的面積為s(cm2),求s與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使得△PQE的面積為矩形ABCD面積的 ;
(4)是否存在某一時刻t,使得點E在線段PQ的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下面各題
(1)計算: +(2011﹣ 0﹣( 1
(2)計算:( + )÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________

查看答案和解析>>

同步練習冊答案