已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點(diǎn)O,以O(shè)為圓心、OB為半徑作圓,且⊙O過A點(diǎn).
(Ⅰ)如圖①,若⊙O的半徑為5,求線段OC的長;
(Ⅱ)如圖②,過點(diǎn)A作ADBC交⊙O于點(diǎn)D,連接BD,求
BD
AC
的值.
(1)∵△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵OA=OB,
∴∠BAO=∠B=30°,
∴∠AOC=30°+30°=60°,
∴∠OAC=90°,
∵OA=5,
∴OC=2AO=10.

(2)連接OD,
∵∠AOC=60°,ADBC,
∴∠DAO=∠AOC=60°,
∵OD=OA,
∴∠ADO=60°,
∴∠DOB=∠ADO=60°,
∵OD=OB,
∴△DOB是等邊三角形,
∴BD=OB=OA,
在Rt△OAC中,OC=2BD,由勾股定理得:AC=
3
BD,
BD
AC
=
3
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△OAB中,點(diǎn)B的坐標(biāo)是(0,4),點(diǎn)A的坐標(biāo)是(3,1).畫出△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后的△BA1O1,求出點(diǎn)A1的坐標(biāo),并求出點(diǎn)A旋轉(zhuǎn)到A1所經(jīng)過的路徑長(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,M為x軸正半軸上的一點(diǎn),⊙M與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),若A(-1,0),C點(diǎn)的坐標(biāo)為(0,
3
)


(1)求M點(diǎn)的坐標(biāo);
(2)如圖,P為
BC
上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD.當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),線段AQ的長度是否改變?若不變,請求其值;若改變,請求出其變化范圍;

(3)如圖,以A為圓心AC為半徑作⊙A,P為⊙A上不同于C、D的一個(gè)動(dòng)點(diǎn),直線PC交⊙M于點(diǎn)Q,K為PQ的中點(diǎn),當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),現(xiàn)給出兩個(gè)結(jié)論:①
CK
PQ
的值不變;②線段OK的長度不變.其中有且只有一個(gè)結(jié)論正確,選擇正確的結(jié)論證明并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AD和AC分別是⊙O的直徑和弦,且∠CAD=30°,OB⊥AD,交AC于點(diǎn)B,若OB=3,則BC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在⊙O中,CD過圓心O,且CD⊥AB,垂足為D,過點(diǎn)C任作一弦CF交⊙O于F,交AB于E.求證:CB2=CF•CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的直徑CD過弦EF的中點(diǎn)G,∠EOD=40°,則∠DCF等于( 。
A.80°B.50°C.40°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),C、A、D三點(diǎn)在一條直線上,CD的延長線交O1O2的延長線于P,∠P=30°,O1O2=2
3
,則CD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,⊙O中直徑AB垂直于弦CD,垂足為E,若AB=10,CD=6,則BE的長是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果⊙O半徑為5cm,弦ABCD,且AB=8cm,CD=6cm,那么AB與CD之間的距離是______cm.

查看答案和解析>>

同步練習(xí)冊答案