17.一組割草人要把兩塊草地上的草割掉,大草地的面積為S,小草地的面積為$\frac{1}{2}$S,上午,全體組員都在大草地上割草,下午,一半人繼續(xù)在大草地割草,到下午5時(shí)將剩下的草割完;另一半人到小草地上割草,等到下午5時(shí)還剩下一部分沒(méi)割完.若上、下午的勞動(dòng)時(shí)間相同,每個(gè)割草人的工作效率也相等,則沒(méi)割完的這部分草地的面積是( 。
A.$\frac{1}{9}$SB.$\frac{1}{6}$SC.$\frac{1}{4}$SD.$\frac{1}{3}$S

分析 設(shè)一半人半天的割草量為1份,則全體組員半天在大草地上的割草量為2份;所以在大草地上的割草量為1+2=3份.因?yàn)榇蟛莸氐拿娣e比小草地大1倍,因此小草地上的總割草量為1.5份.在這1.5份中有一半人半天割草量1份,則剩下沒(méi)割完的這部分草地的面積就是0.5份,即得出結(jié)論..

解答 解:以半組人割半天為1份來(lái)看,大的一塊地正好分3份割完,即S=3份,
則小草地上的總割草量為3÷2=1.5(份),
∵一半人半天割1份,
∴剩下:1.5-1=0.5(份),
∵1份=$\frac{1}{3}$S,
∴0.5份=$\frac{1}{6}$S,
故選B.

點(diǎn)評(píng) 本題考查了列代數(shù)式;這種類(lèi)型的題目,分析起來(lái)較復(fù)雜,關(guān)鍵是抓住題中給出的量,得出沒(méi)割完的這部分草地面積所占的份數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.某廠一月份生產(chǎn)空調(diào)機(jī)1200臺(tái),三月份生產(chǎn)空調(diào)機(jī)1500臺(tái),若二、三月份每月平均增長(zhǎng)的百分率是x,則所列方程是1200(1+x)2=1500.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知A,B兩地相距1100米,甲從A地出發(fā),乙從B地出發(fā),相向而行,甲比乙先出發(fā)2分鐘,乙出發(fā)7分鐘后與甲相遇.設(shè)甲、乙兩人相距y米,甲行進(jìn)的時(shí)間為t分鐘,y與t之間的函數(shù)關(guān)系如圖所示.請(qǐng)你結(jié)合圖象解答:
(1)求甲的行進(jìn)速度和點(diǎn)M的坐標(biāo);
(2)求直線(xiàn)PQ對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)求乙的行進(jìn)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,拋物線(xiàn)y=$\frac{1}{4}$x2-$\frac{3}{2}$ x-4與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對(duì)稱(chēng)中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線(xiàn)l交拋物線(xiàn)于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線(xiàn)段OB上運(yùn)動(dòng)時(shí),直線(xiàn)l分別交BD于點(diǎn)M,求線(xiàn)段MQ長(zhǎng)度的最大值.
(3)當(dāng)點(diǎn)P在線(xiàn)段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)當(dāng)點(diǎn)P在線(xiàn)段EB上運(yùn)動(dòng)時(shí),直線(xiàn)l與菱形BDEC的某一邊交于點(diǎn)S,是否存在 m 值,使得點(diǎn)C、Q、S、D為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫(xiě)出m值,不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列圖形中,既是軸對(duì)稱(chēng)圖形又對(duì)稱(chēng)軸的數(shù)量大于2條的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,l1∥l2∥l3,直線(xiàn)a、b與l1、l2、l3分別相交于點(diǎn)A、B、C和D、E、F.若$\frac{AB}{BC}$=$\frac{2}{3}$,則$\frac{DE}{DF}$等于(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列等式從左到右的變形,屬于因式分解的是(  )
A.a(x-y)=ax-ayB.x2-9=(x+3)(x-3)C.(x+1)(x+2)=x2+3x+2D.x2+2x+1=x(x+2)+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,△ABC≌△DCB,若AC=13,DE=4,則BE的長(zhǎng)為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且a、b滿(mǎn)足:|a+6|+(b-4)2=0
(1)求線(xiàn)段AB的長(zhǎng);
(2)如圖1,點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且是方程x+1=$\frac{1}{4}$x-5的根,在數(shù)軸上是否存在點(diǎn)P使PA+PB=$\frac{1}{4}$BC+AB?若存在,求出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說(shuō)明理由;

(3)如圖2,若P點(diǎn)是B點(diǎn)右側(cè)一點(diǎn),PA的中點(diǎn)為M,N為PB的三等分點(diǎn)且靠近于P點(diǎn),當(dāng)P在B的右側(cè)運(yùn)動(dòng)時(shí),有兩個(gè)結(jié)論:①$\frac{1}{2}$PM-$\frac{3}{8}$BN的值不變;②PM+$\frac{3}{4}$BN的值不變,其中只有一個(gè)結(jié)論正確,請(qǐng)判斷出正確的結(jié)論,并求出其值.

查看答案和解析>>

同步練習(xí)冊(cè)答案