如圖,一個長寬高分別為l,b,h的長方體紙箱裝滿了一層高為h的圓柱形易拉罐,求紙箱空間的利用率.(易拉罐總體積與紙箱容積的比,結(jié)果精確到1%)
設(shè)沿長邊擺放了m個易拉罐,沿寬擺放了n個易拉罐,
則m•2r=l,n•2r=b,
每個易拉罐的體積=πr2•h,
所以長方體紙箱中圓柱形易拉罐所占的總體積=mnπr2•h,
又因為長方體紙盒的體積=lbh,
所以紙箱空間的利用率=
mnπr2•h
lbh
×100%=
mnπr2h
m•2r•n•2r•h
100%=
π
4
×100%≈79%.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,EB為半圓O的直徑,點(diǎn)A在EB的延長線上,AD切半圓O于點(diǎn)D,BC⊥AD,垂足為C,若AB=2cm,半圓O的半徑為2cm,則BC的長為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA切⊙O于點(diǎn)A,PBC是經(jīng)過O點(diǎn)的割線,若∠P=30°,則弧AB的度數(shù)是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在12×7的網(wǎng)格圖中(每個小正方形的邊長均為1個單位).⊙A的半徑為1,⊙B的半徑為2,要使⊙A與靜止的⊙B外切,那么⊙A位置需向右平移多少個單位(  )
A.2B.8C.2或8D.2或4或6或8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在邊長為3cm的正方形中,⊙P與⊙Q相外切,且⊙P分別與DA、DC邊相切,⊙Q分別與BA、BC邊相切,則圓心距PQ為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,O1O2=7cm,⊙O1和⊙O2的半徑分別為2cm和3cm,O1O2交⊙O2于點(diǎn)P.
(1)若把⊙O1沿直線O1O2以每秒1cm的速度從左向右平移,經(jīng)過幾秒后⊙O1與⊙O2相切?
(2)若將⊙O1以每秒30°的速度繞點(diǎn)P順時針方向旋轉(zhuǎn)一周,則經(jīng)過幾秒后⊙O1與⊙O2相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,其中兩圓沒有的位置關(guān)系是( 。
A.外離B.內(nèi)含C.外切D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩等圓⊙O1、⊙O2相交于A、B兩點(diǎn),且兩圓互相過圓心,過B作任一直線,分別交⊙O1、⊙O2于C、D兩點(diǎn),連接AC、AD.
(1)試猜想△ACD的形狀,并給出證明.
(2)若已知條件中兩圓不一定互相過圓心,試猜想三角形的形狀是怎樣的?證明你的結(jié)論.
(3)若⊙O1、⊙O2是兩個不相等的圓,半徑分別為R和r,那么(2)中的猜想還成立嗎?若成立,給出證明;若不成立,那么AC和AD的長與兩圓半徑有什么關(guān)系?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

市園林處計劃在一個半徑為10m的圓形花壇中,設(shè)計三塊半徑相等且互相無重疊部分的圓形地塊分別種植三種不同花色的花卉,為使每種花種植面積最大,則這三塊圓形地塊的半徑為______m(結(jié)果保留精確值).

查看答案和解析>>

同步練習(xí)冊答案