直線x=2,x=-3,y=-2,y=-3所圍成的四邊形的面積是________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下列材料:

我們知道,一次函數(shù)ykxb的圖象是一條直線,而ykxb經(jīng)過恒等變形可化為直線的另一種表達形式:AxBxC=0(A、BC是常數(shù),且AB不同時為0).如圖1,點Pmn)到直線lAxBxC=0的距離(d)計算公式是:d 

例:求點P(1,2)到直線y x的距離d時,先將y x化為5x-12y-2=0,再由上述距離公式求得d  

解答下列問題:

如圖2,已知直線y=-x-4與x軸交于點A,與y軸交于點B,拋物線yx2-4x+5上的一點M(3,2).

(1)求點M到直線AB的距離.

(2)拋物線上是否存在點P,使得△PAB的面積最?若存在,求出點P的坐標(biāo)及△PAB面積的最小值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市春蕾、風(fēng)帆、大成三校九年級第一次模擬數(shù)學(xué)卷(解析版) 題型:解答題

如圖,拋物線y=a(x+1)(x-5)與x軸的交點為M、N.直線y=kx+b

與x軸交于P(-2,0),與y軸交于C.若A、B兩點在直線y=kx+b上,且AO=BO=,AO⊥BO.D為線段MN的中點,OH為Rt△OPC斜邊上的高.

1.OH的長度等于___________;k=___________,b=____________;

2.是否存在實數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點E,滿足以D、N、E為頂點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E點(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG<,寫出探索過程.

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇鎮(zhèn)江九年級第二次中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如果一個點能與另外兩個點構(gòu)成直角三角形,則稱這個點為另外兩個點的勾股點.例如:矩形ABCD中,點C與A,B兩點可構(gòu)成直角三角形ABC,則稱點C為A,B兩點的勾股點.同樣,點D也是A,B兩點的勾股點

1.如圖1,矩形ABCD中,AB=3,BC=1,請在邊CD上作出A,B兩點(除C,D以外)的勾股點(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法).

(1)       2.如圖2,矩形ABCD中,

AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.動點P從D點出發(fā)沿著DC方向以1 cm/s的速度向右移動,過點P的直線l平行于BC,當(dāng)點P運動到點M時停止運動.設(shè)運動時間為t(s) ,點H為M,N兩點的勾股點,且點H在直線l上.

①當(dāng)t=4,求PH的長.

②探究滿足條件的點H的個數(shù)(直接寫出點H的個數(shù)及相應(yīng)t的取值范圍,不必證明).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市九年級第一次中考模擬考試數(shù)學(xué)卷 題型:選擇題

(本題滿分12分)如圖,拋物線ya(x1)(x5)x軸的交點為MN.直線ykxb

x軸交于P(2,0),與y軸交于C.若A、B兩點在直線ykxb上,且AO=BO=AOBOD為線段MN的中點,OHRt△OPC斜邊上的高.

(1)OH的長度等于___________;k=___________,b=____________;

(2)是否存在實數(shù)a,使得拋物線ya(x1)(x5)上有一點E,滿足以DN、E為頂

點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG,寫出探索過程.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年山東省聯(lián)考初一第一學(xué)期期末數(shù)學(xué)卷 題型:填空題

如圖所示,直線y=x+1與y軸相交于點A1,以O(shè)A1為邊作正方形OA1B1C1,記作第一個正方形;然后延長C1B1與直線y=x+1相交于點A2,再以C1A2為邊作正方形C1A2B2C2,記作第二個正方形;同樣延長C2B2與直線y=x+1相交于點A3,再以C2A3為邊作正方形C2A3B3C3,記作第三個正方形;…依此類推,則第n個正方形的邊長為______________

 

查看答案和解析>>

同步練習(xí)冊答案