【題目】如圖,在ABCD中,E為邊CD上一點(diǎn),將沿AE折疊至處,與CE交于點(diǎn),則的大小為________

【答案】

【解析】

由平行四邊形的性質(zhì)得出∠D=B=52°,由折疊的性質(zhì)得:∠D′=D=52°,∠EAD′=DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大。

解:∵四邊形ABCD是平行四邊形,
∴∠D=B=52°,
由折疊的性質(zhì)得:∠D′=D=52°,∠EAD′=DAE=20°
∴∠AEF=D+DAE=52°+20°=72°,∠AED′=180°-EAD′-D′=108°,
∴∠FED′=108°-72°=36°
故答案為:36°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DE分別是等邊三角形ABC的邊BC、AC上的點(diǎn),連接AD、BE交于點(diǎn)O,且ABD≌△BCE

1)若AB=3,AE=2,則BD= ;

2)若∠CBE=15°,則∠AOE= ;

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:(1);(2);(3);(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B分別在x軸、y軸上,點(diǎn)D在第一象限內(nèi),DC⊥x軸于點(diǎn)C,AO=DC=2,AB=DA=,反比例函數(shù)y= (k>0)的圖象過CD的中點(diǎn)E.

(1)求證:△AOB≌△DCA;

(2)求k的值;

(3)△BFG和△DCA關(guān)于某點(diǎn)成中心對(duì)稱,其中點(diǎn)F在y軸上,試判斷點(diǎn)G是否在反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(6,8).頂點(diǎn)Ax軸的正半軸上,反比例函數(shù)的圖象經(jīng)過頂B點(diǎn).

1)求點(diǎn)AB的坐標(biāo);

2)求k值及直線AB對(duì)應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;

(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀學(xué)習(xí):

數(shù)學(xué)中有很多恒等式可以用圖形的面積來得到.

如圖1,可以求出陰影部分的面積是;如圖2,若將陰影部分裁剪下來,重新拼成一個(gè)矩形,它的長是a+b,寬是a-b,比較圖1,圖2陰影部分的面積,可以得到恒等式.

(1)觀察圖3,請(qǐng)你寫出,,之間的一個(gè)恒等式_______________;

(2)根據(jù)(1)的結(jié)論,若,,求出下列各式的值:①;②;

(3)觀察圖4,請(qǐng)寫出圖4所表示的代數(shù)恒等式:______________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,臺(tái)風(fēng)中心位于點(diǎn),并沿東北方向移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為,受影響區(qū)域的半徑為,市位于點(diǎn)的北偏東方向上,距離點(diǎn)處.

1市是否受到這次臺(tái)風(fēng)的影響?為什么?

2)若市受到臺(tái)風(fēng)影響,求受影響的時(shí)間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)邊長為的正方形的中心在直線上,它的一組對(duì)邊垂直于直線,半徑為的圓的圓心在直線上運(yùn)動(dòng),、兩點(diǎn)之間的距離為

)如圖①,當(dāng)時(shí),填表:

、之間的數(shù)量關(guān)系

與正方形的公共點(diǎn)個(gè)數(shù)

__________

__________

__________

)如圖②,與正方形有個(gè)公共點(diǎn)、、、、,求此時(shí)之間的數(shù)量關(guān)系:

)由()可知,、之間的數(shù)量關(guān)系和⊙與正方形的公共點(diǎn)個(gè)數(shù)密切相關(guān).當(dāng)時(shí),請(qǐng)根據(jù)、、之間的數(shù)量關(guān)系,判斷⊙與正方形的公共點(diǎn)個(gè)數(shù).

)當(dāng)之間滿足()中的數(shù)量關(guān)系時(shí),⊙與正方形的公共點(diǎn)個(gè)數(shù)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案