如圖,已知∠1=50°,∠2=65°,CD平分∠ECF,則CD∥FG.請說明理由.
解:∵∠1=50°,
∴∠ECF=180°-∠1=
130°
130°
平角的定義
平角的定義

∵CD平分∠ECF
∴∠DCB=
1
2
1
2
∠ECB=
65
65
°.
角平分線定義
角平分線定義

∵∠2=65°
∴∠DCB=∠2
∴CD∥FG.
同位角相等,兩直線平行
同位角相等,兩直線平行
分析:根據(jù)角平分線的定義以及平行線的判定方法解答即可.
解答:解::∵∠1=50°,
∴∠ECF=180°-∠1=130°(平角的定義),
∵CD平分∠ECF
∴∠DCB=
1
2
∠ECB=65°(角平分線定義),
∵∠2=65°,
∴∠DCB=∠2,
∴CD∥FG(同位角相等,兩直線平行).
故答案為:130°;平角的定義;
1
2
;65;角平分線定義;同位角相等,兩直線平行.
點評:本題考查了平行線的判定,主要是對同學(xué)們邏輯推理能力的訓(xùn)練,熟練掌握平行線的判定方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,已知∠B=50°,∠ECD=150°,CE平分∠ACB,求∠ACB與∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB=50°,點P是異于A、B的⊙O上一點,則∠APB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠BAC=50°,∠C=70°,AD是△ABC的角平分線,那么∠BAD=
25°
25°
,∠ADB=
95°
95°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠MON=50°,P為∠MON內(nèi)一定點,點A為OM上的點,B為ON上的點,當(dāng)△PAB的周長取最小值時,則∠APB度數(shù)是
80°
80°

查看答案和解析>>

同步練習(xí)冊答案