精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知ABC中,∠ACB90°D是邊AB的中點,P是邊AC上一動點,BPCD相交于點E

1)如果BC6AC8,且PAC的中點,求線段BE的長;

2)聯結PD,如果PDAB,且CE2,ED3,求cosA的值;

3)聯結PD,如果BP22CD2,且CE2ED3,求線段PD的長.

【答案】(1)(2)(3) .

【解析】

(1)由勾股定理求出BP的長, D是邊AB的中點,PAC的中點,所以點E是△ABC的重心,然后求得BE的長.

(2)過點BBFCACD的延長線于點F,所以,然后可求得EF=8,所以,所以,因為PDAB,D是邊AB的中點,在△ABC中可求得cosA的值.

(3)由,∠PBD=ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.

解:(1)∵PAC的中點,AC=8

CP=4,

∵∠ACB=90°,BC=6,

BP=,

D是邊AB的中點,PAC的中點,

∴點E是△ABC的重心,

,

(2)過點BBFCACD的延長線于點F,

,

BD=DA,

FD=DC,BF=AC,

CE=2,ED=3,則CD=5,

EF=8,

,

,

,設CP=k,則PA=3k,

PDABD是邊AB的中點,

PA=PB=3k,

,

,

,

3)∵∠ACB=90°D是邊AB的中點,

,

,

∵∠PBD=ABP,

∴△PBD∽△ABP,

∴∠BPD=A,

∵∠A=DCA,

∴∠DPE=DCP,

∵∠PDE=CDP,

DPE∽△DCP,

,

DE=3,DC=5,

.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】每年5月的第二周為職業(yè)教育活動周,今年我省開展了以弘揚工匠精神,打造技能強國為主題的系列活動.活動期間某職業(yè)中學組織全校師生并邀請學生家長和社區(qū)居民參加職教體驗觀摩活動,相關職業(yè)技術人員進行了現場演示,活動后該校教務處隨機抽取了部分學生進行調查:你最感興趣的一種職業(yè)技能是什么?并對此進行了統(tǒng)計,繪制了統(tǒng)計圖(均不完整).請解答以下問題:

1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

2)若該校共有1800名學生,請估計該校對工業(yè)設計最感興趣的學生有多少人?

3)要從這些被調查的學生中,隨機抽取一人進行訪談,那么正好抽到對機電維修最感興趣的學生的概率是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABACDBC的中點,四邊形ABDE是平行四邊形.

1)求證:四邊形ADCE是矩形;

2)若AC、DE交于點O,四邊形ADCE的面積為16,CD4,求∠AOD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.

(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標平面xOy中,點A坐標為,,,ABx軸交于點C,那么ACBC的值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有三張正面分別標有數字:-1,1,2的卡片,它們除數字不同外其余全部相同,現將它們背面朝上,洗勻后從中隨機抽出一張記下數字,放回洗勻后再從中隨機抽出一張記下數字.

(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數字的所有結果;

(2)將第一次抽出的數字作為點的橫坐標x,第二次抽出的數字作為點的縱坐標y,求點(x,y)落在雙曲線上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某小區(qū)規(guī)劃在長20米,寬10米的矩形場地ABCD上修建三條同樣寬的小路,使其中兩條與AD平行,一條與AB平行,其余部分種草,若使草坪的面積為162米2,問小路應為多寬?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數y=和y=在第一象限內的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點A,PD⊥y軸于點D,交y=的圖象于點B.下面結論:

①PA與PB始終相等;②△OBP與△OAP的面積始終相等;

③四邊形PAOB的面積不變;④PABD=PBAC.

其中一定正確的是_____(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數關系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

同步練習冊答案