【題目】已知a是最大的負(fù)整數(shù),b、c滿足,且a,b,c分別是點(diǎn)AB,C在數(shù)軸上對(duì)應(yīng)的數(shù).

(1)a,b,c的值,并在數(shù)軸上標(biāo)出點(diǎn)A,B,C;

(2)若動(dòng)點(diǎn)PC出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒2個(gè)單位長度,運(yùn)動(dòng)幾秒后,點(diǎn)P到達(dá)B點(diǎn)?

(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)MA,BC三點(diǎn)的距離之和等于13,請(qǐng)直接寫出所有點(diǎn)M對(duì)應(yīng)的數(shù).(不必說明理由)

【答案】1a=-1b=3,c=-4.?dāng)?shù)軸見解析;(2秒.(3-5

【解析】

1)根據(jù)絕對(duì)值和偶次冪具有非負(fù)性可得b-3=0,c+4=0,進(jìn)而可得答案;

2)根據(jù)(1)中的數(shù)據(jù)得到BC=7,結(jié)合運(yùn)動(dòng)時(shí)間=運(yùn)動(dòng)路程÷運(yùn)動(dòng)速度解答;

3)注意數(shù)軸上兩點(diǎn)間的距離公式:兩點(diǎn)所對(duì)應(yīng)的數(shù)的差的絕對(duì)值.

1)∵a是最大的負(fù)整數(shù),

a=-1,

|b-3|+c+42=0,

b-3=0c+4=0,

b=3,c=-4

表示在數(shù)軸上為:

2BC=3--4=7,則運(yùn)動(dòng)時(shí)間為秒.

3)設(shè)點(diǎn)M表示的數(shù)為x,使PA、BC的距離和等于13,

①當(dāng)M在點(diǎn)B的右側(cè),x--4+x--1+x-3=13

解得x=

M對(duì)應(yīng)的數(shù)是

②當(dāng)MC點(diǎn)左側(cè),(-4-x+-1-x+3-x=13

解得x=-5

M對(duì)應(yīng)的數(shù)是-5

綜上所述,點(diǎn)M表示的數(shù)是-5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖南省益陽市)如圖①,在ABC中,∠ACB=90°,B=30°,AC=1,DAB的中點(diǎn),EFACD的中位線,四邊形EFGHACD的內(nèi)接矩形(矩形的四個(gè)頂點(diǎn)均在ACD的邊上).

(1)計(jì)算矩形EFGH的面積;

(2)將矩形EFGH沿AB向右平移,F落在BC上時(shí)停止移動(dòng).在平移過程中,當(dāng)矩形與CBD重疊部分的面積為時(shí),求矩形平移的距離;

(3)如圖③,將(2)中矩形平移停止時(shí)所得的矩形記為矩形E1F1G1H1,將矩形E1F1G1H1G1點(diǎn)按順時(shí)針方向旋轉(zhuǎn),當(dāng)H1落在CD上時(shí)停止轉(zhuǎn)動(dòng),旋轉(zhuǎn)后的矩形記為矩形E2F2G1H2,設(shè)旋轉(zhuǎn)角為α,求cosα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c的對(duì)稱軸為直線x=1,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=4,又P是拋物線上位于第一象限的點(diǎn),直線APy軸交于點(diǎn)D,與對(duì)稱軸交于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t.

(1)求點(diǎn)A的坐標(biāo)和拋物線的表達(dá)式;

(2)當(dāng)AE:EP=1:2時(shí),求點(diǎn)E的坐標(biāo);

(3)記拋物線的頂點(diǎn)為M,與y軸的交點(diǎn)為C,當(dāng)四邊形CDEM是等腰梯形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中A0,a)、Bb,0),且滿足4a22+b420,點(diǎn)Pm,m)在線段AB

1)求A、B的坐標(biāo);

2)如圖1,若過PPCABx軸于C,交y軸交于點(diǎn)D,求的值;

3)如圖2,以AB為斜邊在AB下方作等腰直角△ABC,CGOBG,設(shè)I是∠OAB的角平分線與OP的交點(diǎn),IHABH.請(qǐng)?zhí)骄?/span>的值是否發(fā)生改變,若不改變請(qǐng)求其值;若改變請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高科技創(chuàng)新意識(shí),我市某中學(xué)在“2016年科技節(jié)”活動(dòng)中舉行科技比賽,包括“航!、“機(jī)器人”、“環(huán)!、“建!彼膫(gè)類別(每個(gè)學(xué)生只能參加一個(gè)類別的比賽),各類別參賽人數(shù)統(tǒng)計(jì)如圖:

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)全體參賽的學(xué)生共有 人,“建模”在扇形統(tǒng)計(jì)圖中的圓心角是 °;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在比賽結(jié)果中,獲得“環(huán)保”類一等獎(jiǎng)的學(xué)生為1名男生和2名女生,獲得“建模”類一等獎(jiǎng)的學(xué)生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎(jiǎng)的學(xué)生中各隨機(jī)選取1名學(xué)生參加市級(jí)“環(huán)保建!笨疾旎顒(dòng),問選取的兩人中恰為1男生1女生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知輪船A在燈塔P的北偏東30°的方向上,輪船B在燈塔P的南偏東70°的方向上.

(1)求從燈塔P看兩輪船的視角(即∠APB)的度數(shù)?

(2)輪船C在∠APB的角平分線上,則輪船C在燈塔P的什么方位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化用品商店用1 000元購進(jìn)一批晨光套尺,很快銷售一空;商店又用1 500元購進(jìn)第二批該款套尺,購進(jìn)時(shí)單價(jià)是第一批的倍,所購數(shù)量比第一批多100套.

1)求第一批套尺購進(jìn)時(shí)單價(jià)是多少?

2)若商店以每套4元的價(jià)格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,PBC邊上任意一點(diǎn),PF⊥ABF,PE⊥ACE,AC邊上的高BD=a.

(1)試說明PEPF=a;

(2)若點(diǎn)PBC的延長線上,其它條件不變,上述結(jié)論還成立嗎?如果成立請(qǐng)說明理由;如果不成立,請(qǐng)重新給出一個(gè)關(guān)于PE,PF,a的關(guān)系式,不需要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCDADAB),點(diǎn)O位于邊BC上,點(diǎn)E位于邊AB上,點(diǎn)F位于邊AD上,將紙片沿OE、OF折疊,點(diǎn)B、C、D的對(duì)應(yīng)點(diǎn)分別為B、C、D

1)將長方形紙片ABCD按圖①所示的方式折疊,若點(diǎn)BOC上,則∠EOF的度數(shù)為   ;(直接填寫答案)

2)將長方形紙片ABCD按圖②所示的方式折疊,若∠BOC20°,求∠EOF的度數(shù);(寫出必要解題步驟)

3)將長方形紙片ABCD按圖③所示的方式折疊,若∠EOFx°,則∠BOC的度數(shù)為   .(直接填寫答案,答案用含x的代數(shù)式表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案