精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調整自己的位置,設法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數據: , ,結果保留整數.)

【答案】解:過點A作AE⊥MN于E,過點C作CF⊥MN于F, 則EF=AB﹣CD=1.7﹣1.5=0.2(m),
在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,
∴AE=ME.
設AE=ME=xm,則MF=(x+0.2)m,FC=(28﹣x)m.
在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,
∴MF=CFtan∠MCF,
∴x+0.2= (28﹣x),
解得x≈9.7,
∴MN=ME+EN=9.7+1.7≈11米.
答:旗桿MN的高度約為11米.

【解析】過點A作AE⊥MN于E,過點C作CF⊥MN于F,則EF=0.2m.由△AEM是等腰直角三角形得出AE=ME,設AE=ME=xm,則MF=(x+0.2)m,FC=(28﹣x)m.在Rt△MFC中,由tan∠MCF= ,得出 = ,解方程求出x的值,則MN=ME+EN.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在同一坐標系中,一次函數y=ax+b與二次函數y=bx2+a的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平行四邊形ABCD的對角線AC和BD交于O點,分別過頂點B,C作兩對角線的平行線交于點E,得平行四邊形OBEC.
(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請證明你的結論;
(2)當四邊形ABCD是形時,四邊形OBEC是正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB′F.設點E、F、G運動的時間為t(單位:s).

(1)當t=s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若∠ABC的平分線分別交AD,ACP,Q兩點,證明:AP=AQ.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,底邊BC為2 ,頂角A為120°的等腰△ABC中,DE垂直平分AB于D,則△ACE的周長為(

A.2+2
B.2+
C.4
D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在中,,垂足為點H,若,,則______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD⊥BC,CE⊥ABAE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

同步練習冊答案