【題目】取一個自然數(shù),若它是奇數(shù),則乘以3加上1,若它是偶數(shù),則除以2,按此規(guī)則經過若干步的計算最終可得到1.這個結論在數(shù)學上還沒有得到證明.但舉例驗證都是正確的.例如:取自然數(shù)5.最少經過下面5步運算可得1,即:5 16 8 4 2 1,如果自然數(shù)m最少經過7步運算可得到1,則所有符合條件的m的最小值為

【答案】3
【解析】解:利用列舉法進行嘗試,
1(不用運算);
2 1(1步運算);
3 10 5,結合已知給定案例可知,5再經過5步運算可得1,
故3要經過7步運算可得1.
所以答案是:3.
【考點精析】關于本題考查的數(shù)與式的規(guī)律,需要了解先從圖形上尋找規(guī)律,然后驗證規(guī)律,應用規(guī)律,即數(shù)形結合尋找規(guī)律才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在“課外新世界”中遇到這樣一道題:如圖1,已知∠AOB=30°與線段a,你能作出邊長為a的等邊三角形△COD嗎?小明的做法是:如圖2,以O為圓心,線段a為半徑畫弧,分別交OA,OB于點M,N,在弧MN上任取一點P,以點M為圓心,MP為半徑畫弧,交弧CD于點C,同理以點N為圓心,N P為半徑畫弧,交弧CD于點D,連結CD,即△COD就是所求的等邊三角形.
(1)請寫出小明這種做法的理由;
(2)在此基礎上請你作如下操作和探究(如圖3):連結MN,MN是否平行于CD?為什么?
(3)點P在什么位置時,MN∥CD?請用小明的作圖方法在圖1中作出圖形(不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù)a,b,c滿足(a-)2+|c-2|=0.

(1)a,b,c的值;

(2)試問以a,b,c為邊能否構成三角形?若能構成三角形,求出三角形的周長和面積;若不能構成三角形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(1)2x+5=3

(2)6x﹣7=4x﹣5;

(3)4x+3(12﹣x)=6

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.

(Ⅰ)求拋物線的解析式及點D的坐標;
(Ⅱ)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標平面內,以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構成三角形?若能構成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:

(a,b)★(c,d)=bc﹣ad.

例如:(1,2)★(3,4)=2×3﹣1×4=2.

根據(jù)上述規(guī)定解決下列問題:

(1)有理數(shù)對(2,﹣3)★(3,﹣2)=   

(2)若有理數(shù)對(﹣3,2x﹣1)★(1,x+1)=7,則x=   ;

(3)當滿足等式(﹣3,2x﹣1)★(k,x+k)=5+2kx是整數(shù)時,求整數(shù)k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件畫圖

如圖示點A、B、C分別代表三個村莊.

(1)畫射線AC;

(2)畫線段AB;

(3)若線段AB是連結A村和B村的一條公路,現(xiàn)C村莊也要修一條公路與A、B兩村莊之間的公路連通,為了減少修路開支,C村莊應該如何修路?請在同一圖上用三角板畫出示意圖,并說明畫圖理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個口袋中裝有七個完全相同的小球,小球上分別標有-3、-2、-1、0、1、2、3七個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)用表示,將的值分別代入函數(shù)和方程,恰好使得函數(shù)的圖像經過二四象限,且方程有整數(shù)解,那么這7個數(shù)中所有滿足條件的的值之和是( )

A. 1 B. -1 C. -3 D. -4

查看答案和解析>>

同步練習冊答案