【題目】如圖 1,在平面直角坐標(biāo)系中,直線l1:yx5與x軸,y軸分別交于A.B兩點.直線l2:y4xb與l1交于點 D(-3,8)且與x軸,y軸分別交于C、E.
(1)求出點A坐標(biāo),直線l2的解析式;
(2)如圖2,點P為線段AD上一點(不含端點),連接CP,一動點Q從C出發(fā),沿線段CP 以每秒1個單位的速度運動到點P,再沿著線段PD以每秒個單位的速度運動到點D停止,求點Q在整個運動過程中所用最少時間與點P的坐標(biāo);
(3)如圖3,平面直角坐標(biāo)系中有一點G(m,2),使得SCEGSCEB,求點G的坐標(biāo).
【答案】(1)A(5,0),y4x-4;
(2)8秒, P(-1,6);
(3).
【解析】
(1)根據(jù)l1解析式,y=0即可求出點A坐標(biāo),將D點代入l2解析式并解方程,即可求出l2解析式
(2)根據(jù)OA=OB可知ABO和DPQ都為等腰直角三角形,根據(jù)路程和速度,可得點Q在整個運動過程中所用的時間為,當(dāng)C,P,Q三點共線時,t有最小值,根據(jù)矩形的判定和性質(zhì)可以求出P和Q的坐標(biāo)以及最小時間.
(3)用面積法,用含m的表達式求出,根據(jù)SCEGSCEB可以求出G點坐標(biāo).
(1)直線l1:yx5,令y=0,則x=5,
故A(5,0).
將點D(-3,8)代入l2:y4xb,
解得b=-4,
則直線l2的解析式為y4x-4.
∴點A坐標(biāo)為A(5,0),直線l2的解析式為y4x-4.
(2)如圖所示,過P點做y軸平行線PQ,做D點做x軸平行線DQ,PQ與DQ相交于點Q,可知DPQ為等腰直角三角形,.
依題意有
當(dāng)C,P,Q三點共線時,t有最小值,此時
故點Q在整個運功過程中所用的最少時間是8秒,此時點P的坐標(biāo)為(-1,6).
(3)如圖過G做x軸平行線,交直線CD于點H,過C點做CJ⊥HG.
根據(jù)l2的解析式,可得點H(),E(0,-4),C(-1,0)
根據(jù)l1的解析式,可得點A(5,0),B(0,5)
則GH=
又SCEGSCEB
所以,解得
故
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 分別交x軸、y軸于A、B兩點,已知點C坐標(biāo)為(6,0),若直線AB上存在點P,使∠OPC=90°,則m的取值范圍是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中, ,AC=BC,AB=4cm.動點D沿著A→C→B的方向從A點運動到B點.DE⊥AB,垂足為E.設(shè)AE長為cm,BD長為cm(當(dāng)D與A重合時, =4;當(dāng)D與B重合時=0).
小云根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.
下面是小云的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
補全上面表格,要求結(jié)果保留一位小數(shù).則__________.
(2)在下面的網(wǎng)格中建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)DB=AE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,直線經(jīng)過點,且分別交軸、軸于、兩點.
(1)求兩點坐標(biāo);
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面的點陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)認真觀察,并在④后面的橫線上寫出相應(yīng)的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)結(jié)合(1)觀察下列點陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通過猜想,寫出(2)中與第n個點陣相對應(yīng)的等式 .
【答案】(1)10;(2)見解析;(3)
【解析】試題分析:(1)根據(jù)①②③觀察會發(fā)現(xiàn)第四個式子的等號的左邊是1+2+3+4,右邊分子上是(1+4)×4,從而得到規(guī)律;
(2)通過觀察發(fā)現(xiàn)左邊是10+15,右邊是25即5的平方;
(3)過對一些特殊式子進行整理、變形、觀察、比較,歸納出一般規(guī)律.
試題解析:(1)根據(jù)題中所給出的規(guī)律可知:1+2+3+4==10;
(2)由圖示可知點的總數(shù)是5×5=25,所以10+15=52.
(3)由(1)(2)可知
點睛:主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點.
【題型】解答題
【結(jié)束】
19
【題目】如圖,用細線懸掛一個小球,小球在豎直平面內(nèi)的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年月,振華中學(xué)舉行了迎國慶中華傳統(tǒng)文化節(jié)活動.本次文化節(jié)共有五個活動:書法比賽;國畫競技;詩歌朗誦;漢字大賽;古典樂器演奏.活動結(jié)束后,某班數(shù)學(xué)興趣小組開展了“我最喜愛的活動”的抽樣調(diào)查(每人只選一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:
(1)此次催記抽取的初三學(xué)生共 人, ,并補全條形統(tǒng)計圖;
(2)初三年級準備在五名優(yōu)秀的書法比賽選手中任意選擇兩人參加學(xué)校的最終決賽,這五名選手中有三名男生和兩名女生,用樹狀圖或列表法求選出的兩名選手正好是一男一女的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別從丙、丁兩地同時出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達丁地后,乙繼續(xù)前行.設(shè)出發(fā)后,兩人相距,圖中折線表示從兩人出發(fā)至乙到達丙地的過程中與之間的函數(shù)關(guān)系.根據(jù)圖中信息,求:
(1)點的坐標(biāo),并說明它的實際意義;
(2)甲、乙兩人的速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com