【題目】在平面直角坐標系中,點O為坐標原點,拋物線y=﹣x2+2mx+3m2與x軸相交于點B、C(點B在點C的左側),與y軸相交于點A,點D為拋物線的頂點,拋物線的對稱軸交x軸于點E.
(1)如圖1,當AO+BC=7時,求拋物線的解析式;
(2)如圖2,點F是拋物線的對稱軸右側一點,連接BF、CF、DF,過點F作FH∥x軸交DE于點H,當∠BFC=∠DFB+∠BFH=90°時,求點H的縱坐標;
(3)如圖3,在(1)的條件下,點P是拋物線上一點,點P、點A關于直線DE對稱,點Q在線段AP上,過點P作PR⊥AP,連接BQ、QR,滿足QB平分∠AQR,tan∠QRP=,點K在拋物線的對稱軸上且在x軸下方,當CK=BQ時,求線段DK的長.
【答案】(1)y=﹣x2+2x+3;(2)1;(3)7
【解析】
(1)根據(jù)拋物線與軸相交于點、(點在點的左側),與軸相交于點,點為拋物線的頂點,,可以求得的值,從而可以求得該拋物線的解析式;
(2)根據(jù)題意和三角形相似,作出合適的輔助線,可以求得點的縱坐標;
(3)根據(jù)在(1)的條件下,點是拋物線上一點,點、點關于直線對稱,點在線段上,過點作,連接、,滿足平分,,點在拋物線的對稱軸上且在軸下方,,利用勾股定理和三角形的全等可以求得線段的長.
解:(1)∵拋物線y=﹣x2+2mx+3m2=﹣(x﹣m)2+4m2=﹣(x﹣3m)(x+m),
∴當x=0時,y=3m2,當y=0時,x=3m或x=﹣m,該拋物線的頂點坐標為(m,4m2),
∵拋物線y=﹣x2+2mx+3m2與x軸相交于點B、C(點B在點C的左側),與y軸相交于點A,點D為拋物線的頂點,
∴點A(0,3m2),點B(﹣m,0),點C(3m,0),點D(m,4m2),
∴AO=3m2,BC=4m,
∵AO+BC=7,
∴3m2+4m=7,
解得,m1=1,m2=﹣(舍去),
∴拋物線的解析式為y=﹣x2+2x+3;
(2)連接EF,如圖2所示,
∵點B(﹣m,0),點C(3m,0),點D(m,4m2),點E是對稱軸與x軸的交點,
∴BE=CE=2m,BC=4m,
∵∠BFC=90°,
∴EF=BC=2m,
∵HF∥x軸,
∴∠HFB=∠FBE,
∵EF=BE,
∴∠FBE=∠BFE,
∴∠HFB=∠BFE,
∵∠DFB+∠BFH=90°,
∴∠DFB+∠BFE=90°,
∴∠DFE=90°,
∵∠DFE=∠FHE=90°,∠DEF=∠FEH,
∴△DFE∽△FHE,
,
,
解得,EH=1,
∴點E的縱坐標為1;
(3)如圖3,過點B作BM⊥PA交PA的延長線于點M,作BG⊥QR于點G,延長PR交x軸于點N,連接BR,
則四邊形MBNP是矩形,
由(1)知點A(0,3),點D(1,4),點B(﹣1,0),點C(3,0),
∵點P與點A關于直線DE對稱,
∴點P的坐標為(2,3),
∴點N(2,0)
∴BM=BN=3,
∴四邊形MBNP是正方形,
∵QB平分∠AQR,
∴BM=BG,
∴BG=BN,
∵∠MQB=∠GQB,∠QMB=∠QGB=90°,QB=QB,
∴△MQB≌△GQB(AAS),
∴MQ=GQ,
同理可證,△BGR≌△BNR,
∴GR=NR,
∵tan∠QRP=,
∴設PQ=5k,則PR=12k,QR=13k,
∵MP=3,
∴MQ=3﹣5k,
∵NP=3,
∴RN=3﹣12k,
∵QR=QG+GR,MQ=GQ,GR=NR,
∴13k=3﹣5k+3﹣12k,
解得,k=,
∴PQ=1,MQ=2,
∵CE=BE=2,
∴CE=MQ,
∵CK=BQ,
∴Rt△BMQ≌Rt△KEC(HL),
∴BM=EK=3,
∴DK=DE+EK=4+3=7.
科目:初中數(shù)學 來源: 題型:
【題目】學校植物園沿路護欄的紋飾部分設計成若干個全等菱形圖案,每增加一個菱形圖案,紋飾長度就增加dcm,如圖所示,已知每個菱形圖案的邊長為10cm,其中一個內角為60°.
(1)求一個菱形圖案水平方向的對角線長;
(2)若d=26,紋飾的長度L能否是6010cm?若能,求出菱形個數(shù);若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,以AB為直徑作半圓,點P是CD中點,BP與半圓交于點Q,連結DQ,給出如下結論:①;②;③;④,其中正確結論是______填寫序號
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與x軸相交于A、B兩點,與y軸交于C,頂點為D,拋物線的對稱軸DF與BC相交于點E,與x軸相交于點F.
(1)求線段DE的長;
(2)設過E的直線與拋物線相交于M(x1,y1),N(x2,y2),試判斷當|x1﹣x2|的值最小時,直線MN與x軸的位置關系,并說明理由;
(3)設P為x軸上的一點,∠DAO+∠DPO=∠α,當tan∠α=4時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初三進行了第三次模擬考試,該校領導為了了解學生的數(shù)學考試情況,抽樣調查部分學生的數(shù)學成績,并將抽樣的數(shù)據(jù)進行了如下整理:
①如下分數(shù)段整理樣本;
等級等級 | 分數(shù)段 | 各組總分 | 人數(shù) |
A | 110<X<120 | P | 4 |
B | 100<X<110 | 843 | n |
C | 90<X≤100 | 574 | m |
D | 80<X<90 | 171 | 2 |
②根據(jù)左表繪制扇形統(tǒng)計圖.
(1)填空m= ,n= ,數(shù)學成績的中位數(shù)所在的等級 ;
(2)如果該校有1200名學生參加了本次模擬測,估計D等級的人數(shù);
(3)已知抽樣調查學生的數(shù)學成績平均分為102分,求A等級學生的數(shù)學成績的平均分數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩會期間,記者隨機抽取參會的部分代表,對他們某天發(fā)言的次數(shù)進行了統(tǒng)計,其結果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,請結合圖中相關數(shù)據(jù)回答下列問題:
發(fā)言次數(shù)n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
(1)求得樣本容量為 ,并補全直方圖;
(2)如果會議期間組織1700名代表參會,請估計在這一天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)表提議的代表中恰有1為女士,E組發(fā)表提議的代表中只有2位男士,現(xiàn)從A組與E組中分別抽一位代表寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位代表恰好都是男士的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某區(qū)初二年級數(shù)學學科期末質量監(jiān)控情況,進行了抽樣調查,過程如下,請將有關問題補充完整.收集數(shù)據(jù):隨機抽取甲乙兩所學校的名學生的數(shù)學成績進行
甲 91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 44 91
乙 84 93 66 69 76 87 77 82 85 88 90 88 67 88 91 96 68 97 59 88
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù),分析數(shù)據(jù):
分段 學校 | |||||||
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計量 學校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 91 | 268.43 | |
乙 | 81.95 | 86 | 88 | 115.25 |
(1)經統(tǒng)計,表格中的值是__________.
(2)得出結論
①若甲學校有600名初二學生,估計這次考試成績80分以上人數(shù)為__________.
②可以推斷出__________學校學生的數(shù)學水平較高,理由為:__________.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產任務,安排甲、乙兩個大型工廠完成.已知甲廠每天能生產口罩的數(shù)量是乙廠每天能生產口罩的數(shù)量的1.5倍,并且在獨立完成60萬只口罩的生產任務時,甲廠比乙廠少用5天.問至少應安排兩個工廠工作多少天才能完成任務?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別為AB,AC的中點,連接DE,將△ADE繞點E旋轉180°,得到△CFE,連接AF,CD.
(1)四邊形ADCF是什么特殊的四邊形?說明理由;
(2)若BC=8,AC=6,求四邊形ABCF的周長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com