【題目】計算:
(1)化簡:
(2)解不等式組,并求其最小整數(shù)解.

【答案】
(1)解:

=

=

=


(2)解: ,

解①得:x≤3,

解②得:x>﹣2,

故不等式組的解集為:﹣2<x≤3,

故不等式的最小整數(shù)解為:﹣1


【解析】(1)先將1看作是,然后依據(jù)通分母分式的減法法則計算括號內(nèi)的減法,接下來,將分式的分子分母進行分解,最后進行約分即可;
(2)先求得兩個不等式的解集,然后再,依據(jù)大小小大中間找出確定出不等式組的解集,最后,再找出符合條件的整數(shù)解即可.
【考點精析】利用分式的混合運算和一元一次不等式組的解法對題目進行判斷即可得到答案,需要熟知運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】上面圖案中,既是中心對稱圖形,又是軸對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫著3cm、7cm、9cm;乙盒子中裝有4張卡片,卡片上分別寫著2cm、4cm、6cm、8cm;盒子外有一張寫著5cm的卡片.所有卡片的形狀、大小都完全相同.現(xiàn)隨機從甲、乙兩個盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標明的數(shù)量分別作為一條線段的長度.
(1)請用樹狀圖或列表的方法求這三條線段能組成三角形的概率;
(2)求這三條線段能組成直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,面積為6cm2的△ABC紙片沿BC方向平移至△DEF的位置,平移的距離是BC長的2倍,則△ABC紙片掃過的面積為( )

A.18cm2
B.21cm2
C.27cm2
D.30cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 相交于點 O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用水平線和豎直線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)之和為m,內(nèi)部的格點個數(shù)為n,試探究S與m、n之間的關系式.

(1)根據(jù)圖中提供的信息填表:

格點多邊形各邊上的
格點的個數(shù)

格點邊多邊形內(nèi)部的
格點個數(shù)

格點多邊形的面積

多邊形1

4

1

2

多邊形2

5

2

多邊形3

6

3

5

多邊形4

4

一般格點多邊形

m

n

S

則S=(用含m、n的代數(shù)式表示)
(2)對正三角形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,如圖1、2是該正三角形格點中的兩個多邊形:設格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)之和為m,內(nèi)部的格點個數(shù)為n,試探究S與m、n之間的關系式.則S與m、n之間的關系為S=(用含m、n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點連線EF為邊的正方形EFGH的周長為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案