如圖,已知拋物線y=-x2+x+與x軸的兩個交點為A、B,與y軸交于點C.
(1)求A,B,C三點的坐標;
(2)求證:△ABC是直角三角形;
(3)若坐標平面內的點M,使得以點M和三點A、B、C為頂點的四邊形是平行四邊形,求點M的坐標.(直接寫出點的坐標,不必寫求解過程)

【答案】分析:(1)分別令x=0,y=0從而求得點A,B,C的坐標;
(2)利用(1)的結論即可求得AB,AC,BC的長,再根據(jù)勾股定理的逆定理即可證明△ABC為直角三角形;
(3)CD∥AB可得兩個點,AC∥BD也可得到一個.
解答:(1)解:令x=0,得y=,得點C(0,);
令y=0,得-x2+x+=0,
解得x1=-1,x2=3.
∴A(-1,0),B(3,0);

(2)證明:因為AC2=12+(2=4,BC2=32+(2=12,AB2=16,
∴AB2=AC2+BC2
∴△ABC是直角三角形;

(3)解:①如圖:當CM∥AB時,
∵CM=AB=4,
∴M1(4,);
②當AM∥BC時,
∵CM=AB=4,
∴M2(-4,);
當AM∥BC時,
∵直線AC為:y=x+,直線BC為:y=-x+,
∴直線BM為:y=x-3,直線AM為:y=-x-,
∴M3(2,-).
∴M1(4,),M2(-4,),M3(2,-).(只寫出一個給(1分),寫出2個,得1.5分)
點評:此題綜合考查了二次函數(shù)與一元二次方程的關系,直角三角形的判定,平行四邊形的判定等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)精英家教網、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數(shù)關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案