|2-|=________,的平方根=________,64的立方根=________.

答案:
解析:

-2,±2,4


練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2013屆江蘇省南京市鼓樓區(qū)中考二模數(shù)學試卷(帶解析) 題型:解答題

【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學的對話:
A同學:因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.
B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學或者B同學的方法,完成解題過程.
(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)
【解決問題】
根據(jù)對特殊情況的探究經(jīng)驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+)2,善于思考的小明進行了以下探索:

設a+b=(m+n)2(其中a、b、m、n均為整數(shù)),

則有a+b=m2+2n2+2mn.

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方 式的方法.

請仿照小明的方法探索并解決下列問題:

(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a=_      ,b=_      ;

(2)利用所探索的結論,找一組正整數(shù)a、b、m、n,

填空:=()2;

(3)若a+4=(m+n)2,且a、m、n均為正整數(shù),求a的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(貴州黔西南卷)數(shù)學(解析版) 題型:解答題

閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

 設(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

均為正整數(shù)時,若,用含m、n的式子分別表示,得       ,      ;

(2)利用所探索的結論,找一組正整數(shù),填空:        =(        )2

(3)若,且均為正整數(shù),求的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省南京市鼓樓區(qū)中考二模數(shù)學試卷(解析版) 題型:解答題

【提出問題】

如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?

【探究過程】

小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?

如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y(tǒng),那么S△DBE=xy.

以下是幾位同學的對話:

A同學:因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.

B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學或者B同學的方法,完成解題過程.

(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)

【解決問題】

根據(jù)對特殊情況的探究經(jīng)驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年蘇教版初中數(shù)學七年級下 9.4乘法公式練習卷(解析版) 題型:選擇題

利用圖形中面積的等量關系可以得到某些數(shù)學公式.例如,根據(jù)圖甲,我們可以得到兩數(shù)和的平方公式:(a+b)2=a2+2ab+b2.你根據(jù)圖乙能得到的數(shù)學公式是(    )

A. a2- b2= (a-b)2                    B. (a+b)2= a2+2ab+b2    

C. (a-b)2= a2-2ab+b2                                D. a2- b2=(a+b)(a-b)

 

查看答案和解析>>

同步練習冊答案