【題目】一輪船在處測得燈塔在正北方向,燈塔在南偏東方向,輪船向正東航行了,到達處,測得位于北偏西方向,位于南偏西方向.
(1)線段與是否相等?請說明理由;
(2)求、間的距離(參考數據).
【答案】(1)BQ=PQ,理由見解析;(2)4000m
【解析】
(1)首先由已知求出∠PBQ和∠BPQ的度數進行比較得出線段BQ與PQ是否相等;
(2)先由已知求出∠PQA,再由直角三角形PQA求出AQ,由(1)得出BQ=PQ=2400m,又由已知得∠AQB=90°,所以根據勾股定理求出A,B間的距離.
解:(1)線段BQ與PQ相等.
∵∠PQB=90°-41°=49°,
∠BPQ=90°-24.5°=65.5°,
∴∠PBQ=180°-49°-65.5°=65.5°,
∴∠BPQ=∠PBQ,
∴BQ=PQ;
(2)∵∠AQB=180°-49°-41°=90°,
∠PQA=90°-49°=41°,
∴AQ== ==3200,
BQ=PQ=2400,
∴AB2=AQ2+BQ2=32002+24002,
∴AB=4000,
答:A、B的距離為4000m
科目:初中數學 來源: 題型:
【題目】一塊直角三角形的木板,它的一條直角邊AC長為1.5米,面積為1.5平方米.現在要把它加工成一個正方形桌面,甲、乙兩人的加工方法分別如圖(ⅰ)、(ⅱ)所示,記兩個正方形面積分別為S1、S2,請通過計算比較S1與S2的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數的解析式;
(2)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商人將進貨單價為元的某種商品按元銷售時,每天可賣出件.現在他采用提高售價的辦法增加利潤,已知這種商品銷售單價每漲元,銷售量就減少件,那么他將售價每個定為________元時,才能使每天所賺的利潤最大,每天最大利潤是________元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象如圖所示,則關于的一元二次方程的根為________;不等式的解集是________;當________時,隨的增大而減。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,在中,是高,是角平分線,它們相交于點,.求和的度數.
(2)一個多邊形的內角和是外角和的3倍,它是幾邊形?若這個多邊形的各個內角都相等,求這個多邊形的每個內角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com