【題目】如圖,在△ABC中E是BC上的一點,EC=2BE,點D是AC的中點,設△ABC,△ADF,△BEF的面積分別為S△ABC,S△ADF,S△BEF,且S△ABC=12,則S△ADF﹣S△BEF= .
【答案】2;
【解析】
試題分析:S△ADF﹣S△BEF=S△ABD﹣S△ABE,所以求出三角形ABD的面積和三角形ABE的面積即可,因為EC=2BE,點D是AC的中點,且S△ABC=12,就可以求出三角形ABD的面積和三角形ABE的面積.
解:∵點D是AC的中點,
∴AD=AC,
∵S△ABC=12,
∴S△ABD=S△ABC=×12=6.
∵EC=2BE,S△ABC=12,
∴S△ABE=S△ABC=×12=4,
∵S△ABD﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,
即S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】地球上陸地的面積約為149 000 000平方千米,把數(shù)據(jù)149 000 000用科學記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,動點P從點A出發(fā),以2cm/s的速度沿線段AB向點B運動.在運動過程中,當△APC為等腰三角形時,點P出發(fā)的時刻t可能的值為( )
A.5 B.5或8 C. D.4或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積為1.第一次操作:分別延長AB,BC,CA至點A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過幾次操作 ( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,∠COD=90°,直線AB與OC交于點B,與OD交于點A,射線OE和射線AF交于點G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,則∠OGA=
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=30°,則∠OGA=
(3)將(2)中“∠OBA=30°”改為“∠OBA=α”,其余條件不變,則∠OGA= (用含α的代數(shù)式表示)
(4)若OE將∠BOA分成1:2兩部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度數(shù)(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】試解答下列問題:
(1)在圖1我們稱之為“8字形”,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關系: ;
(2)仔細觀察,在圖2中“8字形”的個數(shù)是 個;
(3) 在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.試求∠P的度數(shù);
(4)如果圖2中∠D和∠B為任意角時,其他條件不變,試寫出∠B與∠P、∠D之間數(shù)量關系 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小洪根據(jù)演講比賽中九位評委所給的分數(shù)制作了如下表格:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
8.5 | 8.3 | 8.1 | 0.15 |
如果去掉一個最高分和一個最低分,那么表格中數(shù)據(jù)一定不發(fā)生變化的是( ).
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com