【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設太陽光線與水平地面的夾角為α,當α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的MN這層上曬太陽.( 取1.73)
(1)求樓房的高度約為多少米?
(2)過了一會兒,當α=45°時,問小貓能否還曬到太陽?請說明理由.

【答案】
(1)解:當α=60°時,在Rt△ABE中,

∵tan60°= = ,

∴AB=10tan60°=10 ≈10×1.73=17.3米.

即樓房的高度約為17.3米;


(2)解:當α=45°時,小貓仍可以曬到太陽.理由如下:

假設沒有臺階,當α=45°時,從點B射下的光線與地面AD的交點為點F,與MC的交點為點H.

∵∠BFA=45°,

∴tan45°= =1,

此時的影長AF=AB=17.3米,

∴CF=AF﹣AC=17.3﹣17.2=0.1米,

∴CH=CF=0.1米,

∴大樓的影子落在臺階MC這個側面上,

∴小貓仍可以曬到太陽.


【解析】(1)在Rt△ABE中,由tan60°= = ,即可求出AB=10tan60°=17.3米;(2)假設沒有臺階,當α=45°時,從點B射下的光線與地面AD的交點為點F,與MC的交點為點H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大樓的影子落在臺階MC這個側面上,故小貓仍可以曬到太陽.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,AB=5,AC=8,點P是對角線AC上的一個動點,過點P作EF垂直于AC交AD于點E,交AB于點F,將△AEF折疊,使點A落在點A′處,當△A′CD時等腰三角形時,AP的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一條直線與反比例函數(shù)y= (x>0)的圖象交于兩點A、B,與x軸交于點C,且點B是AC的中點,分別過兩點A、B作x軸的平行線,與反比例函數(shù)y= (x>0)的圖象交于兩點D、E,連接DE,則四邊形ABED的面積為(
A.4
B.
C.5
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,A,B,C的對邊分別為a、b、c,下列說法中錯誤的是

A.如果CB=A,則ABC是直角三角形,且C=90;

B.如果,則ABC是直角三角形,且C=90;

C.如果(c+a)( c-a)=,則ABC是直角三角形,且C=90;

D.如果ABC325,則ABC是直角三角形,且C=90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD的對角線交于點E,有AE=EC,BE=ED,以AB為直徑的半圓過點E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長線與半圓相切于點F,已知直徑AB=8. ①連結OE,求△OBE的面積.
②求扇形AOE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1計算2a+12﹣(2a+1)(﹣1+2a);

2)用乘法公式計算:200222001×2003;

(3)解不等式組:,并把解集在數(shù)軸上表示出來;

(4)解方程組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1操作實踐ABC中,∠A=90°,B=22.5°,請畫出一條直線把△ABC分割成兩個等腰三角形,并標出分割成兩個等腰三角形底角的度數(shù);(要求用兩種不同的分割方法)

2分類探究ABC中,最小內角∠B=24°,若△ABC被一直線分割成兩個等腰三角形,請畫出相應示意圖并寫出△ABC最大內角的所有可能值;

3猜想發(fā)現(xiàn):若一個三角形能被一直線分割成兩個等腰三角形,需滿足什么條件?(請你至少寫出兩個條件,無需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了支援災區(qū)學校災后重建,我校決定再次向災區(qū)捐助床架60,課桌凳100.現(xiàn)計劃租甲、乙兩種貨車共8輛,將這些物質運往災區(qū),已知一輛甲貨車可裝床架5個和課桌凳20, 一輛乙貨車可裝床

10個和課桌凳10.

(1)學校安排甲、乙兩種貨車可一次性把這些物資運到災區(qū)有哪幾種方案?

(2)若甲種貨車每輛要付運輸費1200,乙種貨車要付運輸費1000,則學校應選擇哪種方案,使運輸費

最少?最少運費是多少?

查看答案和解析>>

同步練習冊答案