(本題滿分12分)

我國是世界上嚴(yán)重缺水的國家之一,為了增強(qiáng)居民節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計(jì)費(fèi)辦法收費(fèi).即一月用水10噸以內(nèi)(包括10噸)的用戶,每噸收水費(fèi)元;一月用水超過10噸的用戶,10噸水仍按每噸元收費(fèi),超過10噸的部分,按每噸元()收費(fèi).設(shè)一戶居民月用水噸,應(yīng)收水費(fèi)元,之間的函數(shù)關(guān)系如圖所示.

(1)求的值,若某戶居民上月用水8噸,則應(yīng)收水費(fèi)多少元?

(2)求的值,并寫出當(dāng)時,之間的函數(shù)關(guān)系式;

(3)已知上月居民甲比居民乙多用水4噸,兩家共收水費(fèi)46元,求他們上月分別用水多少噸?

 

【答案】

解:(1)當(dāng)時,有.將,代入,得

用8噸水應(yīng)收水費(fèi)8×1.5=12(元).

(2)當(dāng)時,設(shè)函數(shù)關(guān)系式為

代入,得:

解之,得:

故當(dāng)時,

(3)因1.5×10+1.5×10+2×4<46,

所以甲、乙兩家上月用水均超過10噸.

設(shè)甲、乙兩家上月用水分別為噸,噸,

解之,得

故居民甲上月用水16噸,居民乙上月用水12噸.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時從點(diǎn)O出發(fā),點(diǎn)C以1單位長/秒的速度向點(diǎn)A運(yùn)動,點(diǎn)D以2個單位長/秒的速度沿折線OBA運(yùn)動.設(shè)運(yùn)動時間為t秒,0<t<5.
(1)當(dāng)0<t<
52
時,證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點(diǎn)C為中心,將CD所在的直線順時針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、E、D為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點(diǎn)A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點(diǎn)E,F(xiàn)在l1上,點(diǎn)G,H在l2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點(diǎn)M在△ABC的邊上,過點(diǎn)M畫一條平分三角形面積的直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)COB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)AB的坐標(biāo),并求直線ABCD交點(diǎn)的坐標(biāo);
(2)動點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個單位長度的速度向終點(diǎn)D運(yùn)動;同時,動點(diǎn)M從點(diǎn)A出發(fā),沿線段AB以每秒個單位長度的速度向終點(diǎn)B運(yùn)動,過點(diǎn)P,垂足為H,連接.設(shè)點(diǎn)P的運(yùn)動時間為秒.
①若△MPH與矩形AOCD重合部分的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省鹽城市九年級上學(xué)期學(xué)情調(diào)查數(shù)學(xué)卷 題型:解答題

(本題滿分12分)某商場購進(jìn)一批單價為16元日用品,銷售一段時間后,為了獲得更多利潤,商店決定提高銷售價格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件,若按每件25元的價格銷售時,每月能賣210件,假定每月銷售件數(shù)Y(件)是價格X(元/件)的一次函數(shù)

1.(1)試求Y 與X之間的關(guān)系式。

2.(2)在商品積壓,且不考慮其它因素的條件下,問銷售價格定為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省海安縣五校聯(lián)考九年級上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)如圖,⊙O的半徑為1,點(diǎn)P是⊙O上一點(diǎn),弦AB垂直平分線段OP,點(diǎn)D是弧APB上任一點(diǎn)(與端點(diǎn)A、B不重合),DE⊥AB于點(diǎn)E,以點(diǎn)D為圓心、DE長為半徑作⊙D,分別過點(diǎn)A、B作⊙D的切線,兩條切線相交于點(diǎn)C.

1.(1)求弦AB的長;

2.(2)判斷∠ACB是否為定值,若是,求出∠ACB的大小;否則,請說明理由;

3.(3)記△ABC的面積為S,若=4,求△ABC的周長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省揚(yáng)州市八年級第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)如圖①,一條筆直的公路上有A、B、C 三地,B、C 兩地相距 150 千米,甲、乙兩輛汽車分別從B、C 兩地同時出發(fā),沿公路勻速相向而行,分別駛往CB 兩地.甲、乙兩車到A 地的距離(千米)與行駛時間 x(時)的關(guān)系如圖②所示.

根據(jù)圖象進(jìn)行以下探究:

1.(1)請?jiān)趫D①中標(biāo)出 A地的位置,并作簡要說明;

 2.(2) 甲的速度為            ,乙的速度為          .

3.(3)求圖②中M點(diǎn)的坐標(biāo),并解釋該點(diǎn)的實(shí)際意義;

4.(4)在圖②中補(bǔ)全甲車到達(dá)C地的函數(shù)圖象,求甲車到 A地的距離與行駛時間x的函數(shù)關(guān)系式;

5.(5)出發(fā)多長時間,甲、乙兩車距A點(diǎn)的距離相等?

 

查看答案和解析>>

同步練習(xí)冊答案