【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長.
【答案】(1)證明見解析;(2) AD=6.
【解析】試題分析:(1)連接OD,OE,由AB為圓的直徑得到三角形BCD為直角三角形,再由E為斜邊BC的中點,得到DE=BE=DC,再由OB=OD,OE為公共邊,利用SSS得到三角形OBE與三角形ODE全等,由全等三角形的對應(yīng)角相等得到DE與OD垂直,即可得證;
(2)在直角三角形ABC中,由∠BAC=30°,得到BC為AC的一半,根據(jù)BC=2DE求出BC的長,確定出AC的長,再由∠C=60°,DE=EC得到三角形EDC為等邊三角形,可得出DC的長,由AC﹣CD即可求出AD的長.
試題解析:(1)連接OD,OE,BD,
∵AB為圓O的直徑,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E為斜邊BC的中點,
∴DE=BE,
在△OBE和△ODE中,
OB=OD,OE=OE,BE=DE,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
則DE為圓O的切線;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=60°,DE=CE,
∴△DEC為等邊三角形,即DC=DE=2,
則AD=AC﹣DC=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=a,P為邊BC上一動點(不與B、C重合),E是邊BC延長線上一點,連結(jié)AP,過點P作PF⊥AP交∠DCE的平分線于點F,連結(jié)AF與邊CD交于點G,連結(jié)PG.
猜想:線段PA與PF的數(shù)量關(guān)系為 .
探究:△CPG的周長在點P的運動中是否改變?若不改變求其值.
應(yīng)用:若PG∥CF,當a=時,則PB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,對角線AC與BD交于點O,OE⊥AC交BC于點E,CE=3,則矩形ABCD的面積為( )
A.B.C.12D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2-2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求點A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,若點P在點Q左邊,當矩形PMNQ的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作
y軸的平行線,與直線AC交于點G(點G在點F的上方).若,
求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開通了,中國聯(lián)通公布了資費標準,其中包月186元時,超出部分國內(nèi)撥打0.36元/分.由于業(yè)務(wù)多,小明的爸爸打電話已超出了包月費.下表是超出部分國內(nèi)撥打的收費標準.
時間/分 | 1 | 2 | 3 | 4 | 5 | … |
電話費/元 | 0.36 | 0.72 | 1.08 | 1.44 | 1.80 | … |
(1)這個表反映了哪兩個變量之間的關(guān)系?哪個是自變量?
(2)如果用x表示超出時間,y表示超出部分的電話費,那么y與x的關(guān)系式是什么?
(3)如果打電話超出分鐘,需多付多少電話費?
(4)某次打電話的費用超出部分是元,那么小明的爸爸打電話超出幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為上的點,為上的點,,,那么,
請完成它成立的理由.
∵,
.(______)
∴(______)
∴____________,(______)
∴(______)
∵,
∴(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點在的延長線上,且.過點作,與的垂線交于點.
(1)求證:;
(2)請找出線段、、之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com