在日常生活中,使用某些給定的正多邊形進(jìn)行平面鑲嵌,與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點(diǎn)拼在一起的多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形。
(1)如圖,請(qǐng)根據(jù)下列圖形,填寫表中空格:

正多邊形邊數(shù)

3

4

5

6

n

正多邊形每個(gè)內(nèi)角的度數(shù)

 

 

 

 

(2)如果限于一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形?
(3)正方形和正八邊形能否進(jìn)行鑲嵌平面圖形,若能,說明怎樣鑲嵌。
解:(1)60°, 90°, 108°, 120°,
(2)正三角形、正方形、正六邊形;
(3)能,每個(gè)頂點(diǎn)處需要1個(gè)正方形,2 個(gè)正八邊形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濰坊)許多家庭以燃?xì)庾鳛闊鲲埖娜剂希?jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實(shí)的問題.某款燃?xì)庠钚D(zhuǎn)位置從0度到90度(如圖),燃?xì)怅P(guān)閉時(shí),燃?xì)庠钚D(zhuǎn)的位置為0度,旋轉(zhuǎn)角度越大,燃?xì)饬髁吭酱,燃(xì)忾_到最大時(shí),旋轉(zhuǎn)角度為90度.為測(cè)試燃?xì)庠钚D(zhuǎn)在不同位置上的燃?xì)庥昧,在相同條件下,選擇燃?xì)庠钚o的5個(gè)不同位置上分別燒開一壺水(當(dāng)旋鈕角度太小時(shí),其火力不能夠?qū)⑺疅_,故選擇旋鈕角度x度的范圍是18≤x≤90),記錄相關(guān)數(shù)據(jù)得到下表:
 旋鈕角度(度) 20  50  70  80  90 
 所用燃?xì)饬浚ㄉ?/TD>  73  67  83  97 115 
(1)請(qǐng)你從所學(xué)習(xí)過的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃?xì)饬縴升與旋鈕角度x度的變化規(guī)律?說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)當(dāng)旋鈕角度為多少時(shí),燒開一壺水所用燃?xì)饬孔钌伲孔钌偈嵌嗌伲?BR>(3)某家庭使用此款燃?xì)庠,以前?xí)慣把燃?xì)忾_到最大,現(xiàn)采用最節(jié)省燃?xì)獾男o角度,每月平均能節(jié)約燃?xì)?0立方米,求該家庭以前每月的平均燃?xì)饬浚?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

許多家庭以燃?xì)庾鳛闊鲲埖娜剂希?jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實(shí)的問題.某款燃?xì)庠钚D(zhuǎn)位置從0度到90度(如圖),燃?xì)怅P(guān)閉時(shí),燃?xì)庠钚D(zhuǎn)的位置為0度,旋轉(zhuǎn)角度越大,燃?xì)饬髁吭酱,燃(xì)忾_到最大時(shí),旋轉(zhuǎn)角度為90度.為測(cè)試燃?xì)庠钚D(zhuǎn)在不同位置上的燃?xì)庥昧,在相同條件下,選擇燃?xì)庠钚o的5個(gè)不同位置上分別燒開一壺水(當(dāng)旋鈕角度太小時(shí),其火力不能夠?qū)⑺疅_,故選擇旋鈕角度x度的范圍是18≤x≤90),記錄相關(guān)數(shù)據(jù)得到下表:
 旋鈕角度(度)20 50 70 80 90 
 所用燃?xì)饬浚ㄉ?/td> 73 67 83 97115 
(1)請(qǐng)你從所學(xué)習(xí)過的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃?xì)饬縴升與旋鈕角度x度的變化規(guī)律?說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)當(dāng)旋鈕角度為多少時(shí),燒開一壺水所用燃?xì)饬孔钌伲孔钌偈嵌嗌伲?br />(3)某家庭使用此款燃?xì)庠,以前?xí)慣把燃?xì)忾_到最大,現(xiàn)采用最節(jié)省燃?xì)獾男o角度,每月平均能節(jié)約燃?xì)?0立方米,求該家庭以前每月的平均燃?xì)饬浚?br />

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(解析版) 題型:解答題

許多家庭以燃?xì)庾鳛闊鲲埖娜剂希?jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實(shí)的問題.某款燃?xì)庠钚o位置從0度到90度(如圖),燃?xì)怅P(guān)閉時(shí),燃?xì)庠钚o的位置為0度,旋鈕角度越大,燃?xì)饬髁吭酱螅細(xì)忾_到最大時(shí),旋鈕角度為90度.為測(cè)試燃?xì)庠钚o在不同位置上的燃?xì)庥昧,在相同條件下,選擇在燃?xì)庠钚o的5個(gè)不同位置上分別燒開一壺水(當(dāng)旋鈕角度太小時(shí),其火力不能夠?qū)⑺疅_,故選擇旋鈕角度x度的范圍是18≤x≤90),記錄相關(guān)數(shù)據(jù)得到下表:

旋鈕角度(度)

  20

  50

  70

  80

  90

所用燃?xì)饬?升)

  73

  67

  83

  97

  115

 

 

 

 

 

    (1)請(qǐng)你從所學(xué)習(xí)過的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃?xì)饬縴升與旋鈕角度x度的變化規(guī)律?說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;

    (2)當(dāng)旋鈕角度為多少時(shí),燒開一壺水所用燃?xì)饬孔钌?最少是多少?

    (3)某家庭使用此款燃?xì)庠,以前?xí)慣把燃?xì)忾_到最大,現(xiàn)采用最節(jié)省燃?xì)獾男o角度,每月平均能節(jié)約燃?xì)?0立方米,求該家庭以前每月的平均燃?xì)庥昧浚?/p>

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成一個(gè)平面圖形。
(1)請(qǐng)根據(jù)下列圖形,填寫表中空格:

(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形?
(3)不能用正五邊形形狀的材料鋪滿地面的理由是什么?
(4)某家庭準(zhǔn)備用正三角形與正六邊形兩種瓷磚結(jié)合在一起鑲嵌地面,由你幫助設(shè)計(jì)鑲嵌圖案,你能設(shè)計(jì)幾種不同的鑲嵌方案?
(5)正三角形和正方形組合呢?(畫圖說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

許多家庭以燃?xì)庾鳛闊鲲埖娜剂,?jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實(shí)的問題.某款燃?xì)庠钚o位置從0度到90度(如圖),燃?xì)怅P(guān)閉時(shí),燃?xì)庠钚o的位置為0度,旋鈕角度越大,燃?xì)饬髁吭酱螅細(xì)忾_到最大時(shí),旋鈕角度為90度.為測(cè)試燃?xì)庠钚o在不同位置上的燃?xì)庥昧,在相同條件下,選擇在燃?xì)庠钚o的5個(gè)不同位置上分別燒開一壺水(當(dāng)旋鈕角度太小時(shí),其火力不能夠?qū)⑺疅_,故選擇旋鈕角度x度的范圍是18≤x≤90),記錄相關(guān)數(shù)據(jù)得到下表:

旋鈕角度(度)

  20

  50

  70

  80

  90

所用燃?xì)饬?升)

  73

  67

  83

  97

  115

    (1)請(qǐng)你從所學(xué)習(xí)過的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃?xì)饬縴升與旋鈕角度x度的變化規(guī)律?說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;

    (2)當(dāng)旋鈕角度為多少時(shí),燒開一壺水所用燃?xì)饬孔钌?最少是多少?

    (3)某家庭使用此款燃?xì)庠,以前?xí)慣把燃?xì)忾_到最大,現(xiàn)采用最節(jié)省燃?xì)獾男o角度,每月平均能節(jié)約燃?xì)?0立方米,求該家庭以前每月的平均燃?xì)庥昧浚?/p>

查看答案和解析>>

同步練習(xí)冊(cè)答案