【題目】問題提出
(1)如圖1,點A為線段BC外一動點,且BC=a,AB=b,填空:當(dāng)點A位于 時,線段AC的長取得最大值,且最大值為 (用含a,b的式子表示).
問題探究
(2)點A為線段BC外一動點,且BC=6,AB=3,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE,找出圖中與BE相等的線段,請說明理由,并直接寫出線段BE長的最大值.
問題解決:
(3)①如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時點P的坐標(biāo).
②如圖4,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若對角線BD⊥CD于點D,請直接寫出對角線AC的最大值.
【答案】(1)CB的延長線上,a+b;(2)①CD=BE,②9;(3)P(2﹣,)(4)AC的最大值為2+2
【解析】試題分析:(1)根據(jù)點A位于CB的延長線上時,線段AC的長取得最大值,即可得到結(jié)論;
(2)①根據(jù)等邊三角形的性質(zhì)得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根據(jù)全等三角形的性質(zhì)得到CD=BE;②由于線段BE長的最大值=線段CD的最大值,根據(jù)(1)中的結(jié)論即可得到結(jié)果;
(3)連接BM,將△APM繞著點P順時針旋轉(zhuǎn)90°得到△PBN,連接AN,得到△APN是等腰直角三角形,根據(jù)全等三角形的性質(zhì)得到PN=PA=2,BN=AM,根據(jù)當(dāng)N在線段BA的延長線時,線段BN取得最大值,即可得到最大值為2+3;過P作PE⊥x軸于E,根據(jù)等腰直角三角形的性質(zhì),即可得到結(jié)論;
(4)如圖4中,以BC為邊作等邊三角形△BCM,由△ABC≌△DBM,推出AC=MD,推出欲求AC的最大值,只要求出DM的最大值即可,由BC=4=定值,∠BDC=90°,推出點D在以BC為直徑的⊙O上運動,由圖象可知,當(dāng)點D在BC上方,DM⊥BC時,DM的值最大;
試題解析:解:(1)∵點A為線段BC外一動點,且BC=a,AB=b,∴當(dāng)點A位于CB的延長線上時,線段AC的長取得最大值,且最大值為BC+AB=a+b.故答案為:CB的延長線上,a+b;
(2)①CD=BE,理由:∵△ABD與△ACE是等邊三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB.在△CAD與△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;
②∵線段BE長的最大值=線段CD的最大值,∴由(1)知,當(dāng)線段CD的長取得最大值時,點D在CB的延長線上,∴最大值為BD+BC=AB+BC=3+6=9;
(3)如圖1,連接BM.∵將△APM繞著點P順時針旋轉(zhuǎn)90°得到△PBN,連接AN,則△APN是等腰直角三角形,∴PN=PA=2,BN=AM.∵A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),∴OA=2,OB=5,∴AB=3,∴線段AM長的最大值=線段BN長的最大值,∴當(dāng)N在線段BA的延長線時,線段BN取得最大值,最大值=AB+AN.∵AN=AP=2,∴最大值為2+3;
如圖2,過P作PE⊥x軸于E.∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣).
(4)如圖4中,以BC為邊作等邊三角形△BCM.∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM.∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可.∵BC=4=定值,∠BDC=90°,∴點D在以BC為直徑的⊙O上運動,由圖象可知,當(dāng)點D在BC上方,DM⊥BC時,DM的值最大,最大值=2+2,∴AC的最大值為2+2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據(jù)圖中的信息,解答下列問題:
(1)寫出扇形圖中a= %,并補全條形圖;
(2)在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是 個、 個.
(3)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗暑假期間參加社會實踐活動,從某批發(fā)市場以批發(fā)價每個m元的價格購進100個手機充電寶,然后每個加價n元到市場出售(結(jié)果用含m,n的式子表示)
(1)求售出100個手機充電寶的總售價為多少元?
(2)由于開學(xué)臨近,小麗在成功售出60個充電寶后,決定將剩余充電寶按售價8折出售,并很快全部售完.(注:售價的8折即按原售價的80%出售)
①她的總銷售額是多少元?
②假如不采取降價銷售,且也全部售完,她將比實際銷售多盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的斜邊BC為邊,在△ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO.若AB=4,AO=6,則AC的長等于( 。
A. 12B. 16C. 8+6D. 4+6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運輸部門規(guī)定:辦理托運,當(dāng)一件物品的重量不超過千克時,需付基礎(chǔ)費元和保險費元;為了限制過重物品的托運,當(dāng)一件物品的重量超過千克時,除了付以上基礎(chǔ)費和保險費外,超過部分每千克還需付元的超重費.設(shè)某件物品的重量為千克,支付費用為元.
(1)當(dāng)時,______________(用式子表示);
當(dāng)時,______________(用式子表示);
(2)甲、乙、丙三人各托運一件物品,物品的重量與支付費用如下表所示:
托運人 | 物品重量/千克 | 支付費用/元 |
甲 | 14 | 33 |
乙 | 20 | 39 |
丙 | 30 |
根據(jù)以上提供的信息確定的值,并計算出丙所支付的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”期間,小明一家自駕游去了離家200km的某地,如圖是他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象.根據(jù)圖象,解答下列問題:
(1)點A的實際意義是 ;
(2)求出線段AB的函數(shù)表達式;
(3)他們出發(fā)2.3h時,距目的地還有多少km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)求證:四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90,AC=BC,將△ABC繞點C逆時針旋轉(zhuǎn)α角(0<α<90)得到△A1B1C,連結(jié)BB1.設(shè)CB1交AB于D,A1B1分別交AB、AC于E、F,
(1)在圖中不再添加其它任何線段的情況下,請你找出一對全等的三角形,并加以證明(△ABC與△A1B1C全等除外);
(2)當(dāng)△BB1D是等腰三角形時,求α.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com