【題目】若化簡|1-x|-的結(jié)果為2x﹣5,則x的取值范圍是( )
A. x為任意實(shí)數(shù)B. 1≤x≤4 C. x≥1D. x≤4
【答案】B
【解析】
根據(jù)完全平方公式先把多項(xiàng)式化簡為|1-x|-|x-4|,然后根據(jù)x的取值范圍分別討論,求出符合題意的x的值即可.
原式可化簡為|1-x|-|x-4|,
當(dāng)1-x≥0,x-4≥0時(shí),可得x無解,不符合題意;
當(dāng)1-x≥0,x-4≤0時(shí),可得x≤1時(shí),原式=1-x-4+x=-3;
當(dāng)1-x≤0,x-4≥0時(shí),可得x≥4時(shí),原式=x-1-x+4=3;
當(dāng)1-x≤0,x-4≤0時(shí),可得1≤x≤4時(shí),原式=x-1-4+x=2x-5,
據(jù)以上分析可得當(dāng)1≤x≤4時(shí),多項(xiàng)式等于2x-5,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期實(shí)驗(yàn)中學(xué)組織開展課外興趣活動(dòng),各活動(dòng)小班根據(jù)實(shí)際情況確定了計(jì)劃組班人數(shù),并發(fā)動(dòng)學(xué)生自愿報(bào)名,報(bào)名人數(shù)與計(jì)劃人數(shù)的前5位情況如下:
若用同一小班的計(jì)劃人數(shù)與報(bào)名人數(shù)的比值大小來衡量進(jìn)入該班的難易程度,學(xué)生中對(duì)于進(jìn)入各活動(dòng)小班的難易有以下預(yù)測:①籃球和航模都能進(jìn);②舞蹈比寫作容易;③寫作比奧數(shù)容易;④舞蹈比奧數(shù)容易.則預(yù)測正確的有___________(填序號(hào)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F為AB延長線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:Rt△ABE≌ Rt△CBF;
(2)求證:AE⊥CF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在春節(jié)期間搞優(yōu)惠促銷活動(dòng),商場將29英寸和25英寸彩電共96臺(tái)分別以8折和7折出售,共得168400元。已知29英寸彩電原價(jià)為3000元/臺(tái),25英寸彩電原價(jià)為2000元/臺(tái),出售29英寸和25英寸彩電各多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以圓O為圓心,半徑為1的弧交坐標(biāo)軸于A,B兩點(diǎn),P是弧上一點(diǎn)(不與A,B重合),連接OP,設(shè)∠POB=α,則點(diǎn)P的坐標(biāo)是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知平行四邊形ABCD頂點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B在y軸上,且AD∥BC∥x軸,過B,C,D三點(diǎn)的拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,2),點(diǎn)F(m,6)是線段AD上一動(dòng)點(diǎn),直線OF交BC于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)設(shè)四邊形ABEF的面積為S,請(qǐng)求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)如圖2,過點(diǎn)F作FM⊥x軸,垂足為M,交直線AC于P,過點(diǎn)P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點(diǎn)H,G,試求線段MN的最小值,并直接寫出此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,可以單獨(dú)用正三角形、正方形或正六邊形鋪滿地面,如果我們要同時(shí)用兩種不同的正多邊形鋪滿地面,可以設(shè)計(jì)出幾種不同的組合方案?
問題解決:
猜想1:是否可以同時(shí)用正方形、正八邊形兩種正多邊形組合鋪滿地面?
驗(yàn)證1并完成填空:在鋪地面時(shí),設(shè)圍繞某一個(gè)點(diǎn)有x個(gè)正方形和y個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角.根據(jù)題意:可得方程①: ,
整理得②: ,
我們可以找到方程的正整數(shù)解為③: .
結(jié)論1:鋪滿地面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著④個(gè)正方形和⑤個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角,所以同時(shí)用正方形和正八邊形兩種正多邊形組合可以鋪滿地面.
猜想2:是否可以同時(shí)用正三角形和正六邊形兩種正多邊形組合鋪滿地面?若能,請(qǐng)按照上述方法進(jìn)行驗(yàn)證,并寫出所有可能的方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com