【題目】某校為了豐富學(xué)生的課外體育活動(dòng),購(gòu)買(mǎi)了排球和跳繩.已知排球的單價(jià)是跳繩的單價(jià)的3倍,購(gòu)買(mǎi)跳繩共花費(fèi)750元,購(gòu)買(mǎi)排球共花費(fèi)900元,購(gòu)買(mǎi)跳繩的數(shù)量比購(gòu)買(mǎi)排球的數(shù)量多30個(gè),求跳繩的單價(jià).
【答案】解:設(shè)跳繩的單價(jià)為x元,則排球的單價(jià)為3x元,
依題意得: ﹣ =30,
解方程,得x=15.
經(jīng)檢驗(yàn):x=15是原方程的根,且符合題意.
答:跳繩的單價(jià)是15元.
【解析】由"買(mǎi)跳繩的數(shù)量比購(gòu)買(mǎi)排球的數(shù)量多30個(gè)“可構(gòu)建方程,用跳繩的單價(jià)x表示兩個(gè)數(shù)量,然后二者相減即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分式方程的應(yīng)用的相關(guān)知識(shí),掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫(xiě)出答案(要有單位).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面推理過(guò)程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的方格地面上,標(biāo)有編號(hào)A,B,C的3個(gè)小方格地面是空地,另外6個(gè)小方格地面是草坪,除此以外小方格地面完全相同.
(1)一只自由飛行的鳥(niǎo),將隨意地落在圖中的方格地面上,問(wèn)小鳥(niǎo)落在草坪上的概率是多少?
(2)現(xiàn)從3個(gè)小方格空地中任意選取2個(gè)種植草坪,則剛好選取A和B的2個(gè)小方格空地種植草坪的概率是多少(用樹(shù)形圖或列表法求解)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在第一象限,點(diǎn)B,C的坐標(biāo)為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交x軸于點(diǎn)P.若△ABC與△A'B'C'關(guān)于點(diǎn)P成中心對(duì)稱(chēng),則點(diǎn)A'的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知l1//l2,射線MN分別和直線l1,l2交于點(diǎn)A,B,射線ME分別和直線l1,l2交于點(diǎn)C,D,點(diǎn)P在射線MN上運(yùn)動(dòng)(P點(diǎn)與A,B,M三點(diǎn)不重合),設(shè)∠PDB=α ,∠PCA=β ,∠CPD=γ .
(1)如果點(diǎn)P在A,B兩點(diǎn)之間運(yùn)動(dòng)時(shí),α,β,γ之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)如果點(diǎn)P在A,B兩點(diǎn)之外運(yùn)動(dòng)時(shí),α,β,γ之間有何數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問(wèn)題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫(xiě)出了如下的證明過(guò)程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過(guò)程給小強(qiáng)看,若不成立請(qǐng)你說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=∠CGE.其中正確的結(jié)論是( )
A. ②③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)形狀、大小完全相同的含有30°、60°的直角三角板如圖①放置,PA、PB與直線MN重合,且三角板PAC、三角板PBD均可繞點(diǎn)P逆時(shí)針旋轉(zhuǎn).
(1)直接寫(xiě)出∠DPC的度數(shù).
(2)如圖②,在圖①基礎(chǔ)上,若三角板PAC的邊PA從PN處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為5°/秒,同時(shí)三角板PBD的邊PB從PM處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為1°/秒,(當(dāng)PA轉(zhuǎn)到與PM重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)),在旋轉(zhuǎn)過(guò)程中,當(dāng)PC與PB重合時(shí),求旋轉(zhuǎn)的時(shí)間是多少?
(3)在(2)的條件下,PC、PB、PD三條射線中,當(dāng)其中一條射線平分另兩條射線的夾角時(shí),請(qǐng)直接寫(xiě)出旋轉(zhuǎn)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板 (∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方,將如圖中的三角板繞點(diǎn)O以每秒3°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周。
(1)幾秒后ON與OC重合?
(2)如圖,經(jīng)過(guò)t秒后,MN∥AB,求此時(shí)t的值。
(3)若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒6°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,那么經(jīng)過(guò)多長(zhǎng)時(shí)間OC與OM重合?請(qǐng)畫(huà)圖并說(shuō)明理由。
(4)在(3)的條件下,求經(jīng)過(guò)多長(zhǎng)時(shí)間OC平分∠MOB?請(qǐng)畫(huà)圖并說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com