【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC于點F.

(1)判斷DF與是⊙O的位置關(guān)系,并證明你的結(jié)論。
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

【答案】
(1)相切。證明:如圖,連OD,AD,

∵AB是⊙O的直徑,∴AD⊥BC,
又∵AB=AC,∴D是BC的中點,
∵OA=OB∴OD是△ABC的中位線,
∴OD∥AC∵DF⊥AC, ∴OD⊥DF,
∴DF是⊙O的切線.
(2)解:∵∠CDF=22.5°,DF⊥AC,∴∠C=67.5°,
∴∠BAC=2∠DAC=45°,
連接OE,則∠BOE=2∠BAC=90°,∴∠AOE=90°,
∴S陰影 ×4×4=4π-8.
【解析】(1)要證與圓有公共點的切線,可連接圓心和公共點,證直線和半徑垂直,即OD⊥DF,可利用中位線定理和等腰三角形、直徑所對90度圓周角的性質(zhì)證出;(2)S陰影可轉(zhuǎn)化為扇形面積減去AOE面積,需求圓心角∠BOE度數(shù).
【考點精析】解答此題的關(guān)鍵在于理解切線的判定定理的相關(guān)知識,掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB巧分線

1)一個角的平分線   這個角的巧分線;(填不是

2)如圖2,若∠MPN=α,且射線PQ是∠MPN巧分線,則∠MPQ=   ;(用含α的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當PQPN180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

3)當t為何值時,射線PM是∠QPN巧分線;

4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當射線PQ是∠MPN巧分線t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線的解析式為,分別交軸、軸于點

1)寫出兩點的坐標,并畫出直線的圖象.(不需列表);

2)將直線向左平移4個單位得到軸于點.作出的圖象,的解析式是___________

3)過的頂點能否畫出直線把分成面積相等的兩部分?若能,可以畫出幾條?直接寫出滿足條件的直線解析式.(不必在圖中畫出直線)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DE垂直平分AB,分別交的邊、,平分.設(shè),

1)求關(guān)于的函數(shù)關(guān)系式;

2)當為等腰三角形時,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿直線DE折疊后,使得點B與點A重合.已知AC=5cm,△ADC的周長為17cm,則BC的長為( )

A.7cm
B.10cm
C.12cm
D.22cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,頂點B的坐標為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.

(1)求直線DE的解析式和點M的坐標;
(2)若反比例函數(shù) (x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上;
(3)若反比例函數(shù) (x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有七張正面分別標有數(shù)字﹣1、﹣2、0、1、2、3、4的卡片,除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程 + =2的解為正數(shù),且不等式組 無解的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖長方形OABC的位置如圖所示,點B的坐標為(8,4),點P從點C出發(fā)向點O移動,速度為每秒1個單位;點Q同時從點O出發(fā)向點A移動,速度為每秒2個單位,設(shè)運動時間為t(0≤t≤4)

(1)填空:點A的坐標為 ,點C的坐標為 ,點P的坐標為 (用含t的代數(shù)式表示)

(2)當t為何值時,P、Q兩點與原點距離相等?

(3)在點P、Q移動過程中,四邊形OPBQ的面積是否變化?說明理由。

查看答案和解析>>

同步練習冊答案