【題目】某市為了建設(shè)國(guó)家級(jí)衛(wèi)生城市.市政部門(mén)決定搭配A、B兩種園藝造型共50個(gè)擺放在市區(qū),現(xiàn)有3490盆甲種花卉和2950盆乙種花卉可供使用,已知搭配一個(gè)A種造型需甲種花卉80盆,乙種花卉40盆,搭配一個(gè)B種造型需甲種花卉50盆,乙種花卉90.

1)問(wèn)符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來(lái).

2)若搭配一個(gè)A種造型的費(fèi)用是800元,搭配一個(gè)B種造型的費(fèi)用是960元,試說(shuō)明(1)中哪種方案費(fèi)用最低?最低費(fèi)用是多少元?

【答案】1)方案一:31個(gè)A、19個(gè)B,方案二:32個(gè)A、18個(gè)B,方案三:33個(gè)A、17個(gè)B;(242720

【解析】

1)擺放50個(gè)園藝造型所需的甲種和乙種花卉應(yīng)<現(xiàn)有的盆數(shù),可由此列出不等式求出符合題意的搭配方案來(lái);

2)根據(jù)兩種造型單價(jià)的成本費(fèi)可分別計(jì)算出各種可行方案所需的成本,然后進(jìn)行比較;也可由兩種造型的單價(jià)知單價(jià)成本較低的造型較多而單價(jià)成本較高的造型較少,所需的總成本就低.

解:(1)設(shè)搭配A種造型x個(gè),則B種造型為(50x)個(gè),根據(jù)題意

,

解之得:

x是整數(shù),

x可取31,32,33

∴可設(shè)計(jì)三種搭配方案,分別為:

方案一:31個(gè)A,19個(gè)B

方案二:32個(gè)A,18個(gè)B

方案三:33個(gè)A,17個(gè)B

2)如果一個(gè)A造型費(fèi)用800元,一個(gè)B造型費(fèi)用960元,則各個(gè)方案費(fèi)用分別為:

方案一,31×800+19×960=43040

方案二,32×800+18×960=42880

方案三,33×800+17×960=42720

通過(guò)上述計(jì)算發(fā)現(xiàn),方案三費(fèi)用最低,最低為42720

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形△ABC的腰長(zhǎng)AB=AC=25,BC=40,動(dòng)點(diǎn)P從B出發(fā)沿BC向C運(yùn)動(dòng),速度為10單位/秒.動(dòng)點(diǎn)Q從C出發(fā)沿CA向A運(yùn)動(dòng),速度為5單位/秒,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)的時(shí)候兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),點(diǎn)P′是點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn),連接P′P和P′Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)若當(dāng)t的值為m時(shí),PP′恰好經(jīng)過(guò)點(diǎn)A,求m的值.
(2)設(shè)△P′PQ的面積為y,求y與t之間的函數(shù)關(guān)系式(m<t≤4)
(3)是否存在某一時(shí)刻t,使PQ平分角∠P′PC?存在,求相應(yīng)的t值,不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)通了互聯(lián)網(wǎng)家校合育教育平臺(tái),為了解家長(zhǎng)使用平臺(tái)的情況,學(xué)校將家長(zhǎng)的使用情況分為經(jīng)常使用、“偶爾使用”和“不使用”三種類型,借助該平臺(tái)大數(shù)據(jù)功能,匯總出該校八(1)班和八(2)班全體家長(zhǎng)的使用情況,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中信息解答下列問(wèn)題

(1)此次調(diào)查的家長(zhǎng)總?cè)藬?shù)為   ;

(2)扇形統(tǒng)計(jì)圖中代表“不使用”類型的扇形圓心角的度數(shù)是   °,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校八年級(jí)學(xué)生家長(zhǎng)共有1200人,根據(jù)此次調(diào)查結(jié)果估計(jì)該校八年級(jí)中“經(jīng)常使用”類型的家長(zhǎng)約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 . 其中正確的結(jié)論是( )

A.①②
B.①③
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列推理論證過(guò)程:

如圖,已知∠A=∠EDF,∠C=∠F,

求證:BCEF

證明:∵∠A=∠EDF

________________

∴∠C=∠BGD

又∵∠C=∠F 已知

_______=∠F(等量代換

BCEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)閱讀內(nèi)容,在括號(hào)內(nèi)填寫(xiě)推理依據(jù).

如果兩條平行線被三條直線所截,那么一對(duì)內(nèi)錯(cuò)角的角平分線一定互相平行.

已知:ABCDEM平分∠AEF,FN平分∠EFD

求證: EMFN

證明:

ABCD

∠AEF=∠DFE

EM平分∠AEF

∴∠MEF= AEF

FN平分∠EFD

∠EFN=∠ EFD

∠MEF=∠ EFN

EM FN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.

(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:
①c>0;
②若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;
③2a﹣b=0;
<0,
其中,正確結(jié)論的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫(xiě),即.例如:的一種形式的配方;所以,,的三種不同形式的配方(即余項(xiàng)分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng)).

請(qǐng)根據(jù)閱讀材料解決下列問(wèn)題:

1)比照上面的例子,寫(xiě)出三種不同形式的配方;

2)已知,求的值;

3)已知,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案