【題目】如圖, 拋物線與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
【答案】D
【解析】
利用拋物線開(kāi)口方向得到a<0,再由拋物線的對(duì)稱軸方程得到b=-2a,則3a+b=a,于是可對(duì)①進(jìn)行判斷;利用2≤c≤3和c=-3a可對(duì)②進(jìn)行判斷;利用二次函數(shù)的性質(zhì)可對(duì)③進(jìn)行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn)可對(duì)④進(jìn)行判斷.
∵拋物線開(kāi)口向下,
∴a<0,
而拋物線的對(duì)稱軸為直線x=-=1,即b=-2a,
∴3a+b=3a-2a=a<0,所以①正確;
∵2≤c≤3,
而c=-3a,
∴2≤-3a≤3,
∴-1≤a≤-,所以②正確;
∵拋物線的頂點(diǎn)坐標(biāo)(1,n),
∴x=1時(shí),二次函數(shù)值有最大值n,
∴a+b+c≥am2+bm+c,
即a+b≥am2+bm,所以③正確;
∵拋物線的頂點(diǎn)坐標(biāo)(1,n),
∴拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),
∴關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,所以④正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,△ABC的頂點(diǎn)都在格點(diǎn)上,點(diǎn)C坐標(biāo)(0,-1).
作出△ABC 關(guān)于原點(diǎn)對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
把△ABC 繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得△A2B2C2,畫出△A2B2C2,并寫出點(diǎn)A2的坐標(biāo);
(3)直接寫出△A2B2C2的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P(x,0)是x軸上的一個(gè)動(dòng)點(diǎn),它與原點(diǎn)的距離為y1.
(1)求y1關(guān)于x的函數(shù)解析式,并畫出這個(gè)函數(shù)的圖象;
(2)若反比例函數(shù)y2的圖象與函數(shù)y1的圖象相交于點(diǎn)A,且點(diǎn)A的縱坐標(biāo)為2.
①求k的值;
②結(jié)合圖象,當(dāng)y1>y2時(shí),寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】布袋里有四個(gè)小球,球表面分別標(biāo)有2、3、4、6四個(gè)數(shù)字,它們的材質(zhì)、形狀、大小完全相同。從中隨機(jī)摸出一個(gè)小球記下數(shù)字為x,再?gòu)氖O碌娜齻(gè)球中隨機(jī)摸出一個(gè)球記下數(shù)字為y,點(diǎn)A的坐標(biāo)為(x,y).運(yùn)用畫樹(shù)狀圖或列表的方法,寫出A點(diǎn)所有可能的坐標(biāo),并求出點(diǎn)A在反比例函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線分別交軸、軸于點(diǎn)A、B,拋物線過(guò)A,B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC 軸于點(diǎn)C,交拋物線于點(diǎn)D.
(1)若拋物線的解析式為,設(shè)其頂點(diǎn)為M,其對(duì)稱軸交AB于點(diǎn)N.
①求點(diǎn)M、N的坐標(biāo);
②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我區(qū)電視臺(tái)舉行的“講故事”比賽中,甲、乙、丙三位評(píng)委,對(duì)選手的綜合表現(xiàn),分別給出“待定”或“通過(guò)” 的結(jié)論.
(1)利用樹(shù)狀圖寫出三位評(píng)委給出選手A的所有可能的結(jié)論;
(2)對(duì)于選手A,只有甲、乙兩位評(píng)委給出相同結(jié)論的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中考英語(yǔ)聽(tīng)力測(cè)試期間T需要杜絕考點(diǎn)周圍的噪音.如圖,點(diǎn)A是某市一中考考點(diǎn),在位于考點(diǎn)南偏西15°方向距離500米的C點(diǎn)處有一消防隊(duì).在聽(tīng)力考試期間,消防隊(duì)突然接到報(bào)警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報(bào)聲傳播半徑為400米,若消防車的警報(bào)聲對(duì)聽(tīng)力測(cè)試造成影響,則消防車必須改道行駛.試問(wèn):消防車是否需要改道行駛?
說(shuō)明理由.(≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線OA與反比例函數(shù)()的圖像交于點(diǎn)A(3,3),將直線OA沿y軸向下平移,與反比例函數(shù)()的圖像交于點(diǎn)B(6,m),與y軸交于點(diǎn)C.
(1)求直線BC的解析式;
(2)求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com