【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號是 (把你認為正確的都填上).
【答案】①②④
【解析】
∵四邊形ABCD是正方形,∴AB=AD。
∵△AEF是等邊三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①說法正確。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②說法正確。
如圖,連接AC,交EF于G點,
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③說法錯誤。
∵EF=2,∴CE=CF=。
設(shè)正方形的邊長為a,在Rt△ADF中,,解得,
∴。
∴。∴④說法正確。
綜上所述,正確的序號是①②④。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,8個完全相同的小矩形拼成了一個大矩形,AB是其中一個小矩形的對角線,請在大矩形中完成下列畫圖,要求:①僅用無刻度的直尺;②保留必要的畫圖痕跡.
(1)在圖1中畫出一個45°的角,使點A或者點B是這個角的頂點,且AB為這個角的一邊.
(2)在圖2中畫出線段AB的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“龜免賽跑”的故事同學們都非常熱悉,圖中的線段OD和折線OABC表示“龜兔賽跑時路程與時間的關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線OABC表示賽跑過程中_______(填“兔子”或“烏龜”)的路程與時間的關(guān)系,賽跑的全過程是___________米.
(2)兔子在起初每分鐘跑多少米?烏龜每分鐘爬多少米?
(3)烏龜用了多少分鐘追上了正在睡覺的兔子?
(4)兔子醒來假,以400米/分的速度跑向終點,結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,.點從點出發(fā)沿路徑向終點運動;點從點出發(fā)沿路徑向終點運動.點和分別以1和3的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過和作于,于.則點運動時間等于____________時,與全等。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△DEF的三個頂點都在格點上,結(jié)合所給的平面直角坐標系解答下列問題:
(1)將△DEF向右平移5個單位長度,畫出平移后的△D1E1F1;
(2) 將△DEF向上平移5個單位長度,再向右平移4個單位長度,畫出平移后的△D2E2F2;
(3)求出三角形DEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.
(1)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀并說明理由;
(2)已知a:b:c=3:4:5,求該一元二次方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB與CD相交于點O,OE、OF分別是∠BOD、∠AOD的平分線。
(1)∠DOE的補角是___;
(2)若∠BOD=62°,求∠AOE和∠DOF的度數(shù);
(3)判斷射線OE與OF之間有怎樣的位置關(guān)系?并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,CE∥BD,DE∥AC,若AC=4,則四邊形OCED的周長為( )
A.4B.8C.10D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com