【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(4,﹣2)、B(﹣2,n)兩點,與x軸交于點C.
(1)求k2,n的值;
(2)請直接寫出不等式k1x+b<的解集;
(3)將x軸下方的圖象沿x軸翻折,點A落在點A′處,連接A′B,A′C,求△A′BC的面積.
【答案】(1)k2=﹣8,n=4;(2)﹣2<x<0或x>4;(3)8
【解析】(1)將A點坐標(biāo)代入y=求出k2=-8,得到反比例函數(shù)的解析式y=-,再把B點坐標(biāo)代入y=-得n=4;
(2)用函數(shù)的觀點將不等式問題轉(zhuǎn)化為函數(shù)圖象問題;
(3)求出對稱點坐標(biāo),求面積.
(1)將A(4,-2)代入y=,得k2=-8.
∴y=-,
將(-2,n)代入y=-,得n=4.
∴k2=-8,n=4
(2)根據(jù)函數(shù)圖象可知:
-2<x<0或x>4
(3)將A(4,-2),B(-2,4)代入y=k1x+b,得k1=-1,b=2
∴一次函數(shù)的關(guān)系式為y=-x+2
與x軸交于點C(2,0)
∴圖象沿x軸翻折后,得A′(4,2),
S△A'BC=(4+2)×(4+2)×-×4×4-×2×2=8
∴△A'BC的面積為8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)環(huán)境保護(hù)意識, 月 日“世界環(huán)境日”當(dāng)天,若干名“環(huán)境小衛(wèi)士”組成了“控制噪聲污染”課題學(xué)習(xí)研究小組.該小組抽樣調(diào)查了全市 個噪聲測量點在某時刻的噪聲聲級(單位:),將調(diào)查的數(shù)據(jù)進(jìn)行處理(設(shè)所測數(shù)據(jù)均為正整數(shù)),得頻數(shù)分布表如表:
組 別 | 噪聲聲級分組 | 頻 數(shù) | 頻 率 |
1 | 44.5--59.5 | 4 | 0.1 |
2 | 59.5--74.5 | a | 0.2 |
3 | 74.5--89.5 | 10 | 0.25 |
4 | 89.5--104.5 | b | c |
5 | 104.5--119.5 | 6 | 0.15 |
合 計 | 40 | 1.00 |
根據(jù)表中提供的信息解答下列問題:
(1)頻數(shù)分布表中的 , , ;
(2)補(bǔ)全完整頻數(shù)分布直方圖(如圖);
(3)從這個統(tǒng)計中,你認(rèn)為噪聲污染的噪音聲級分布情況怎樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組開展以下折紙活動:①對折矩形紙片ABCD,使AD和BC重合,得到折痕EF,把紙片展開;②再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN.觀察探究可以得到∠NBC的度數(shù)是( 。
A. 20°B. 25°C. 30°D. 35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、
B(0,1)、C(d,2)。
(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B′、C′正好落在某反比例函數(shù)圖
像上。請求出這個反比例函數(shù)和此時的直線B′C′的解析式;
(3)在(2)的條件下,直線B′C′交y軸于點G。問是否存在x軸上的點M和反比例函數(shù)圖像上的點P,
使得四邊形PGMC′是平行四邊形。如果存在,請求出點M和點P的坐標(biāo);如果不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=6,BC=8,點E、F分別是BC、CD邊上的點,且AE⊥EF,BE=2,
(1)求證:AE=EF;
(2)延長EF交矩形∠BCD的外角平分線CP于點P(圖2),試求AE與EP的數(shù)量關(guān)系;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)(1)題中的拋物線上有一個動點P,當(dāng)點P在拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標(biāo);
(3)設(shè)(1)題中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標(biāo)有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機(jī)摸出一個小球記下數(shù)字為y.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是 ;
(2)請用列表法或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結(jié)果,并求出點P(x,y)落在第三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空并解答相關(guān)問題:
(1)觀察下列數(shù)1,3,9,27,81…,發(fā)現(xiàn)從第二項開始,每一項除以前一項的結(jié)果是一個常數(shù),這個常數(shù)是________;根據(jù)此規(guī)律,如果an (n為正整數(shù))表示這列數(shù)的第n項,那么an =__________;
你能求出它們的和嗎?
計算方法:如果要求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320①
將①式兩邊同乘以3,得3S=3+32+33+…+320+321②
由②式左右兩邊分別減去①式左右兩邊,
得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),
即2S=321-1,兩邊同時除以2得.
(2)你能用類比的思想求1+6+62+63+…+6100的值嗎?寫出求解過程.
(3)你能用類比的思想求1+m+m2+m3+…+mn(其中mn≠0,m≠1)的值嗎?寫出求解過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com