【題目】某學(xué)校要從甲乙兩名射擊運(yùn)動(dòng)員中挑選一人參加全市比賽,在選拔賽中,每人進(jìn)行了5次射擊,甲的成績(jī)(環(huán))為:9.7,10,9.6,9.8,9.9;乙的成績(jī)的平均數(shù)為9.8,方差為0.032;
(1)甲的射擊成績(jī)的平均數(shù)和方差分別是多少?
(2)據(jù)估計(jì),如果成績(jī)的平均數(shù)達(dá)到9.8環(huán)就可能奪得金牌,為了奪得金牌,應(yīng)選誰(shuí)參加比賽?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖6,在平面直角坐標(biāo)系中,一次函數(shù)=+1的圖象交軸于點(diǎn)D,與反比例函數(shù)=的圖象在第一象限相交于點(diǎn)A.過(guò)點(diǎn)A分別作軸軸的垂線,垂足為點(diǎn)BC.
(1)點(diǎn)D的坐標(biāo)為 ;
(2)當(dāng)AB=4AC時(shí),求值;
(3)當(dāng)四邊形OBAC是正方形時(shí),直接寫(xiě)出四邊形ABOD與△ACD面積的比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市水果批發(fā)部門欲將 A 市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過(guò)程中的損耗均為 200 元/ 時(shí).其它主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中平均速度(千米/ 時(shí)) | 運(yùn)費(fèi)(元/ 千米) | 裝卸費(fèi)用(元) |
火車 | 100 | 15 | 2000 |
汽車 | 80 | 20 | 900 |
運(yùn)輸過(guò)程中,火車因多次臨時(shí)停車,全程在路上耽誤 2 小時(shí) 45 分鐘,火車的總支出費(fèi)用與汽車的總支出費(fèi)用相同,請(qǐng)問(wèn)某市與本地的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C. 已知A,C兩點(diǎn)的坐標(biāo)分別為A(-4,0), C(0,4).
(1)求拋物線的表達(dá)式;
(2)如果點(diǎn)P,Q在拋物線上(P點(diǎn)在對(duì)稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標(biāo);
(3)動(dòng)點(diǎn)M在直線y=x+4上,且△ABC與△COM相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖為放置在水平桌面上的臺(tái)燈的平面示意圖,可伸縮式燈臂AO長(zhǎng)為40 cm,與水平面所形成的夾角∠OAM恒為75°(不受燈臂伸縮的影響).由光源0射出的光線沿?zé)粽中纬晒饩OC,OB,與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°.
(1)求該臺(tái)燈照亮桌面的寬度BC.(不考慮其他因素,結(jié)果精確到1 cm,參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26, ≈1.73)
(2)若燈臂最多可伸長(zhǎng)至60 cm,不調(diào)整燈罩的角度,能否讓臺(tái)燈照亮桌面85 cm的寬度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為△ABC邊AC的中點(diǎn),AD∥BC交BO的延長(zhǎng)線于點(diǎn)D,連接DC,DB平分∠ADC,作DE⊥BC,垂足為E.
(1)求證:四邊形ABCD為菱形;
(2)若BD=8,AC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理是幾何學(xué)中的明珠,充滿著魅力,千百年來(lái),人們對(duì)它趨之若鶩,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛(ài)好者,向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法:把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為a、b、c,顯然∠DAB=∠B=90°,AC⊥DE.
(1)請(qǐng)用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再通過(guò)探究這三個(gè)圖形面積之間的關(guān)系,證明:勾股定理a2+b2=c2;
(2)如圖2,鐵路上A、B兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=24千米,BC=16千米,在AB上有一個(gè)供應(yīng)站P,且PC=PD,求出AP的距離;
(3)借助(2)的思考過(guò)程與幾何模型,直接寫(xiě)出代數(shù)式的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分別為邊AB、AC的中點(diǎn),將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°到△A1BC1的位置,則整個(gè)旋轉(zhuǎn)過(guò)程中線段OH所掃過(guò)部分的面積(即陰影部分面積)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“直角”在初中數(shù)學(xué)學(xué)習(xí)中無(wú)處不在在數(shù)學(xué)活動(dòng)課上,李老師要求同學(xué)們用所學(xué)知識(shí),利用無(wú)刻度的直尺和圓規(guī)判斷“已知∠AOB“是不是直角.甲、乙兩名同學(xué)各自給出不同的作法,來(lái)判斷∠AOB是不是直角
甲:如圖1,在OA、OB上分別取點(diǎn)CD,以C為圓心,CD長(zhǎng)為半徑畫(huà)弧,交OB的反向延長(zhǎng)線于點(diǎn)E,若OE=OD,則∠AOB=90°;
乙:如圖2,在OA、OB上分別截取OM=4個(gè)單位長(zhǎng)度,ON=3個(gè)單位長(zhǎng)度,若MN=5個(gè)單位長(zhǎng)度,則∠AOB=90°;
甲、乙兩位同學(xué)作法正確的是( )
A. 甲正確,乙不正確B. 乙正確,甲不正確
C. 甲和乙都不正確D. 甲和乙都正確
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com