【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=1.直線y=x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:①2a+b+c0; ab+c0; xax+ba+b; a<﹣1

其中正確的是(  )

A. ①②③④B. ①②③C. ②③D. ①②

【答案】A

【解析】

利用拋物線與y軸的交點(diǎn)位置得到c0,利用對稱軸方程得到b2a,則2abcc0,于是可對①進(jìn)行判斷;利用拋物線的對稱性得到拋物線與x軸的另一個交點(diǎn)在點(diǎn)(10)右側(cè),則當(dāng)x1時,y0,于是可對②進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)得到x1時,二次函數(shù)有最大值,則ax2bxcabc,于是可對③進(jìn)行判斷;由于直線yxc與拋物線yax2bxc交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,利用函數(shù)圖象得x3時,一次函數(shù)值比二次函數(shù)值大,即9a3bc3c,然后把b2a代入解a的不等式,則可對④進(jìn)行判斷.

解:∵拋物線與y軸的交點(diǎn)在x軸上方,

c0,

∵拋物線的對稱軸為直線x1,

b2a,

2abc2a2acc0,所以①正確;

∵拋物線與x軸的一個交點(diǎn)在點(diǎn)(3,0)左側(cè),

而拋物線的對稱軸為直線x1,

∴拋物線與x軸的另一個交點(diǎn)在點(diǎn)(1,0)右側(cè),

∴當(dāng)x1時,y0,

abc0,所以②正確;

x1時,二次函數(shù)有最大值,

ax2bxcabc,

ax2bxab,所以③正確;

∵直線yxc與拋物線yax2bxc交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,

x3時,一次函數(shù)值比二次函數(shù)值大,

9a3bc3c,

b2a,

9a6a3,解得a1,所以④正確.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADEF,垂足為點(diǎn)E,點(diǎn)H是菱形ABCD的對稱中心.若FC=,EF=DE,則菱形ABCD的邊長為( �。�

A.B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A,B兩地相距120千米,甲、乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車,圖中DE,OC分別表示甲、乙離開A地的路程s(單位:千米)與時間t(單位:小時)的函數(shù)關(guān)系的圖象,設(shè)在這個過程中,甲、乙兩人相距y(單位:千米),則y關(guān)于t的函數(shù)圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ADC,ADAC,B是線段DC上的一點(diǎn),連結(jié)AB,且有ABDB

1)求證:△ADB∽△CDA

2)若DB2,BC3,求AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對應(yīng)點(diǎn)D′之間的距離為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC的直角邊AB=BC=10cm,點(diǎn)P、Q分別從AC兩點(diǎn)同時出發(fā),均以1cm/秒的相同速度作直線運(yùn)動,已知P沿射線AB運(yùn)動,Q沿邊BC的延長線運(yùn)動,PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動時間為t,△PCQ的面積為S

1)求出S關(guān)于t的函數(shù)關(guān)系式;

2)當(dāng)點(diǎn)P運(yùn)動幾秒時,SPCQ=SABC

3)作PE⊥AC于點(diǎn)E,當(dāng)點(diǎn)PQ運(yùn)動時,線段DE的長度是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“江畔”禮品店在十一月份從廠家購進(jìn)甲、乙兩種不同禮品.購進(jìn)甲種禮品共花費(fèi)1500元,購進(jìn)乙種禮品共花費(fèi)1050元,購進(jìn)甲種禮品數(shù)量是購進(jìn)乙種禮品數(shù)量的2倍,且購進(jìn)一件乙種禮品比購進(jìn)一件甲種禮品多花20元.

⑴求購進(jìn)一件甲種禮品、一件乙種禮品各需多少元;

⑵元旦前夕,禮品店決定再次購進(jìn)甲、乙兩種禮品共50個.恰逢該廠家對兩種禮品的價格進(jìn)行調(diào)整,一件甲種禮品價格比第一次購進(jìn)時提高了20%,一件乙種禮品價格比第一次購進(jìn)時降低了5元.如果此次購進(jìn)甲、乙兩種禮品的總費(fèi)用不超過3100元,那么這家禮品店最少可購進(jìn)多少件甲種禮品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AD=4,以對角線的一半為邊依次作平行四邊形,則=__________,=_________________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,BC=3cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C勻速運(yùn)動,在邊AB,BC上分別以4cm/s3cm/s的速度運(yùn)動,同時點(diǎn)Q從點(diǎn)A出發(fā),沿A→D→C向終點(diǎn)C勻速運(yùn)動,在邊AD,DC上分別以3cm/s4cm/s的速度運(yùn)動,連接PQ,設(shè)點(diǎn)P的運(yùn)動時間為t(s),四邊形PBDQ的面積為S(cm2).

(1)當(dāng)點(diǎn)P到達(dá)邊AB的中點(diǎn)時,求PQ的長;

(2)St之間的函數(shù)解析式,并寫出自變量t的取值范圍;

(3)連接DP,當(dāng)直線DP將矩形ABCD分成面積比為15兩部分時,直接寫出t的值,并寫出此時S的值.

查看答案和解析>>

同步練習(xí)冊答案