【題目】如圖,點(diǎn)C是⊙O上一點(diǎn),⊙O的半徑為 ,D、E分別是弦AC、BC上一動(dòng)點(diǎn),且OD=OE= ,則AB的最大值為(
A.
B.
C.
D.

【答案】A
【解析】解:如圖,當(dāng)OD⊥AC、OE⊥BC時(shí)∠ACB最大,AB最大, 連接OC,
∵⊙O的半徑為2 ,OD= ,
∴∠ACO=30°,
∴AC=2CD=2 =2 =2 ,
同理可得∠BOC=30°,
∴∠ACB=60°,
∵OD=OE,OD⊥AC、OE⊥BC,
∴AC=BC,
∴△ABC是等邊三角形,
∴AB=AC=2
即AB的最大值為2
故選A.

【考點(diǎn)精析】關(guān)于本題考查的垂徑定理,需要了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓弧形橋拱的跨度AB=16米,拱高CD=4米,那么圓弧形橋拱所在圓的半徑是米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,南沙區(qū)政府決定對(duì)區(qū)直屬機(jī)關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機(jī)抽查了其中50戶家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn)每戶用水量均在10﹣14噸/月范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計(jì)圖.

(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)這50戶家庭月用水量的平均數(shù)是 ,眾數(shù)是 ,中位數(shù)是 ;

(3)根據(jù)樣本數(shù)據(jù),估計(jì)南沙區(qū)直屬機(jī)關(guān)300戶家庭中月平均用水量不超過(guò)12噸的約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一個(gè)含45°角的直角三角板BEF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)B重合,聯(lián)結(jié)DF,點(diǎn)MN分別為DF,EF的中點(diǎn),聯(lián)結(jié)MA,MN.

(1)如圖1,點(diǎn)E,F分別在正方形的邊CB,AB上,請(qǐng)判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接

寫出結(jié)論;

(2)如圖2,點(diǎn)E,F分別在正方形的邊CBAB的延長(zhǎng)線上,其他條件不變,那么你在(1)中得到的兩個(gè)結(jié)論還成立嗎?若立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA為⊙O的切線,A為切點(diǎn),過(guò)A作OP的垂線AB,垂足為點(diǎn)C,交⊙O于點(diǎn)B,延長(zhǎng)BO與⊙O交于點(diǎn)D,與PA的延長(zhǎng)線交于點(diǎn)E.
(1)求證:PB為⊙O的切線;
(2)若tan∠ABE= ,求sin∠E.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AOB與∠COD有共同的頂點(diǎn)O,其中∠AOB=COD=60°.

(1)如圖①,試判斷∠AOC與∠BOD的大小關(guān)系,并說(shuō)明理由;

(2)如圖①,若∠BOC=10°,求∠AOD的度數(shù);

(3)如圖①,猜想∠AOD與∠BOC的數(shù)量關(guān)系,并說(shuō)明理由;

(4)若改變∠AOB,COD的位置,如圖②,則(3)的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.

(1)證明:AB=AD+BC;

(2)判斷△CDE的形狀?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)在實(shí)施快樂(lè)大課間之前組織過(guò)“我最喜歡的球類”的調(diào)查活動(dòng),每個(gè)學(xué)生僅選擇一項(xiàng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)求出被調(diào)查的學(xué)生人數(shù);
(2)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場(chǎng).如果確定小亮打第一場(chǎng),其余三人用“手心、手背”的方法確定誰(shuí)獲勝誰(shuí)打第一場(chǎng)若三人中有一人出的與其余兩人不同則獲勝;若三人出的都相同則平局.已知大剛出手心,請(qǐng)用樹狀圖分析大剛獲勝的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程:①3x﹣1=2x+1, ,x﹣1=x中,解為x=2的是方程( 。

A. 、②和③ B. 、③和④ C. 、③和④ D. 、②和④

查看答案和解析>>

同步練習(xí)冊(cè)答案