【題目】如圖,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,EF分別為邊AC、AB的中點.

1)求∠A的度數(shù);

2)求EFAE的長.

【答案】130°2EF=2cmAE=2cm

【解析】

1)由直角三角形的兩個銳角互余的性質(zhì)來求∠A的度數(shù);

2)由“30度角所對的直角邊等于斜邊的一半求得BC= AB=4cm,再利用中位線的性質(zhì)即可解答

1)∵在RtABC中,∠C=90°,∠B=60°

∴∠A=90°-B=30°

即∠A的度數(shù)是30°.

2)∵在RtABC中,∠C=90°,∠A=30°,AB=8cm

BC=AB=4cm

AC= =cm

AE=AC=2cm

E、F分別為邊ACAB的中點

EFABC的中位線

EF=BC=2cm.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校抽查了某班級某月10天的用電量,數(shù)據(jù)如下表:

用電量/度

8

9

10

13

14

15

天數(shù)

1

1

2

3

1

2

1)這10天用電量的眾數(shù)是______度,中位數(shù)是______度;

2)求這個班級平均每天的用電量;

3)該校共有20個班級,該月共計30天,試估計該校該月總的用電量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】預(yù)習了“線段、射線、直線”一節(jié)的內(nèi)容后,樂樂所在的小組,對如圖展開了激烈的討論,下列說法不正確的是( )

A. 直線AB與直線BA是同一條直線

B. 射線OA與射線AB是同一條射線

C. 射線OA與射線OB是同一條射線

D. 線段AB與線段BA是同一條線段

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD為菱形,點E在邊AD上,點F在邊CD

(1) AE=CF,求證:EB=BF

(2) AD=4,DE=CF,且EFB為等邊三角形,求四邊形DEBF的面積

(3) 若∠DAB=60°,點H在邊BC上,且BH=HC=2.若∠DFA=2HAB,直接寫出CF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)>0)的對稱軸與x軸交于點B,與直線l交于點C,點A是該二次函數(shù)圖像與直線l在第二象限的交點,點D是拋物線的頂點,已知ACCO=1∶2,∠DOB=45°,△ACD的面積為2.

(1) 求拋物線的函數(shù)關(guān)系式;

(2) 若點P為拋物線對稱軸上的一個點,且POC=45°,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊矩形紙片ABCD,AB=8,AD=6.將紙片折疊,使得AD邊落在AB邊上,折痕為AE,再將AED沿DE向右翻折,AEBC的交點為F,則CF的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線x軸交于點A、B,與y軸交于點C,直線y=x+4經(jīng)過點A、C,點P為拋物線上位于直線AC上方的一個動點.

(1)求拋物線的表達式;

(2)如圖,當CP//AO時,求∠PAC的正切值;

(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯誤的是( )

A. 拋物線于x軸的一個交點坐標為(﹣2,0)

B. 拋物線與y軸的交點坐標為(0,6)

C. 拋物線的對稱軸是直線x=0

D. 拋物線在對稱軸左側(cè)部分是上升的

查看答案和解析>>

同步練習冊答案