【題目】如圖,在數(shù)學活動課中,小敏為了測量校園內(nèi)旗桿CD的高度,先在教學樓的底端A點處,觀測到旗桿頂端C的仰角∠CAD=60°,然后爬到教學樓上的B處,觀測到旗桿底端D的俯角是30°,已知教學樓AB高4米.
(1)求教學樓與旗桿的水平距離AD;(結(jié)果保留根號)
(2)求旗桿CD的高度.

【答案】
(1)

解:∵教學樓B點處觀測到旗桿底端D的俯角是30°,

∴∠ADB=30°,

在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,

∴AD= = =4 (m),

答:教學樓與旗桿的水平距離是4 m.


(2)

解:∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4 m,

∴CD=ADtan60°=4 × =12(m),

答:旗桿CD的高度是12m.


【解析】(1)根據(jù)題意得出∠ADB=30°,進而利用銳角三角函數(shù)關(guān)系得出AD的長;
   。2)利用(1)中所求,結(jié)合CD=ADtan60°求出答案.此題主要考查了解直角三角的應(yīng)用,正確應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】之前我們學習了一元一次方程的解法,下面是一道解一元一次方程的題:

解方程=1

老師說:這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說的方法進行了解答,小明同學的解題過程如下:

解:方程兩邊同時乘以6,得×6﹣×6=1…………①

去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②

去括號,得:4﹣6x﹣3x+15=1……………③

移項,得:﹣6x﹣3x=1﹣4﹣15…………④

合并同類項,得﹣9x=﹣18……………⑤

系數(shù)化1,得:x=2………………⑥

上述小明的解題過程從第   步開始出現(xiàn)錯誤,錯誤的原因是   

請幫小明改正錯誤,寫出完整的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)從A,B兩市場向甲、乙兩地運送水果,A,B兩個水果市場分別有水果3515噸,其中甲地需要水果20噸,乙地需要水果30噸,從A到甲地運費50/噸,到乙地30/噸;從B到甲地運費60/噸,到乙地45/

(1)設(shè)A市場向甲地運送水果x噸,請完成表:

運往甲地(單位:噸)

運往乙地(單位:噸)

A市場

x

   

B市場

   

   

(2)設(shè)總運費為W元,請寫出Wx的函數(shù)關(guān)系式,寫明x的取值范圍;

(3)怎樣調(diào)運水果才能使運費最少?運費最少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】仔細觀察下面的日歷,回答下列問題:

(1)任意用正方形框圈出四個日期如果正方形框中的第一個數(shù)(左上角的數(shù))為,用代數(shù)式表示正方形框中的四個數(shù)的和;

(2)若將正方形框上下左右移動,可框住另外的四個數(shù),這四個數(shù)的和能等于嗎?如果能,依次寫出這四個數(shù);如果不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在ABC中,∠B <C,AD,AE分別是ABC的高和角平分線。

(1)若∠B=30°,C=50°,試確定∠DAE的度數(shù);

(2)試寫出∠DAE,B,C的數(shù)量關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段達到節(jié)水的目的,該市自來水收費的價目表如下表(注:水費按月份結(jié)算,表示立方米):請根據(jù)上表的內(nèi)容解答下列問題:

(1)填空:若該戶居民月份用水,則應(yīng)收水費___________元;

(2)若該戶居民月份用水 (其中),則應(yīng)收水費多少元?

價目表

每月用水量

單價

不超過6的部分

2/

超出6不超出10的部分

4/

超出10的部分

8/

(3)若該戶居民、兩個月共用水月份用水量超過了月份),設(shè)月份用水,求該戶居民、兩個月共交水費多少元?(答案可含有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是等邊三角形,DBC邊上的一個動點D不與B,C重合是以AD為邊的等邊三角形,過點FBC的平行線交射線AC于點E,連接BF

如圖1,求證:;

請判斷圖1中四邊形BCEF的形狀,并說明理由;

D點在BC邊的延長線上,如圖2,其它條件不變,請問中結(jié)論還成立嗎?如果成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,OE是∠BOD的平分線,OFOE,∠BOE=20°.

(1)求∠AOC的度數(shù);

(2)求∠COF的度數(shù).

查看答案和解析>>

同步練習冊答案