【題目】如圖,△ABC中,∠C=90°,BC=6,AC=4.點P、Q分別從點A、B同時出發(fā),點P沿A→C的方向以每秒1個單位長的速度向點C運動,點Q沿B→C的方向以每秒2個單位長的速度向點C運動.當其中一個點先到達點C時,點P、Q停止運動.當四邊形ABQP的面積是△ABC面積的一半時,求點P運動的時間.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時,OA、OC、ON三條射線構(gòu)成相等的角,求此時t的值為多少?
(2)將圖1中的三角板繞點O順時針旋轉(zhuǎn)圖2,使ON在∠AOC的內(nèi)部,請?zhí)骄浚?/span>∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各式,且把結(jié)果化為只含有正整數(shù)指數(shù)的形式:
(1)(x﹣2)﹣3(yz﹣1)3 ;(2)a2b3(2a﹣1b)3
(3)(3a3b2c﹣1)﹣2(5ab﹣2c3)2;(4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的頂點坐標分別為 A(1,1),B(1,-1),C(-1,-1),D(-1,1),y軸上有一點 P(0,2).作點P關(guān)于點A的對稱點P1,作點P1關(guān)于點B的對稱點P2,作點P2關(guān)于點C的對稱軸P3,作點P3關(guān)于點D的對稱點P4,作點P4關(guān)于點A的對稱點P5,作點P5關(guān)于點B的對稱點P6,…,按此操作下去,則點P2016的坐標為( )
A. (0,2) B. (2,0) C. (0,-2) D. (-2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.
(1)求這條直線的解析式及點B的坐標;
(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形ABC中,∠C=90°,點O為AB上的一點,以點O為圓心,OA為半徑的圓弧與BC相切于點D,交AC于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)已知AE=2,DC=,求圓弧的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條長為60cm的卷尺鋪平后折疊,使得卷尺自身的一部分重合,然后在重合部分(陰影處)沿與卷尺邊垂直的方向剪一刀,此時卷尺分為了三段,若這三段長度由短到長的比為1:2:3,則折痕對應(yīng)的刻度的可能性有 ( )
A. 4種 B. 5種 C. 6種 D. 7種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com